Springe direkt zu Inhalt

Was passiert, wenn das Atomgitter eines Magneten erhitzt wird?

Forschungsverbund mit neuen Erkenntnissen zu ultraschnellen Prozessen in magnetischen Systemen / Wissenschaftlerinnen und Wissenschaftler des Fachbereichs Physik der Freien Universität Berlin beteiligt

Nr. 200/2018 vom 24.07.2018

Ein internationales Forscherteam hat nach eigener Einschätzung physikalische Prozesse aufgeklärt, die bei einer extrem plötzlichen Erhitzung des Atomgitters von sogenannten Ferrimagneten ablaufen. Ferrimagnete bestehen aus zwei Sorten atomarer Magnete, deren Magnetisierungen unterschiedlich stark sind und in entgegengesetzte Richtung zeigen. Für den Ferrimagneten Yttrium-Eisen-Granat (YIG) beobachteten die Forscherinnen und Forscher, wie sich dessen magnetische Ordnung durch eine plötzliche Erhitzung mit ultraschnellen Laserlichtblitzen bei Terahertz-Frequenzen in zwei Schritten reduzierte: auf einer Skala von einer Pikosekunde, was dem Millionstel einer Millionstel Sekunde entspricht, und danach auf einer 100.000-mal langsameren Skala von 100 Nanosekunden. Die Arbeit entstand in einem Forschungsverbund von Wissenschaftlerinnen und Wissenschaftlern aus Berlin, Dresden, Uppsala (Schweden), St. Petersburg (Russland) und Sendai (Japan) unter der Leitung einer Arbeitsgruppe des Fachbereichs Physik der Freien Universität im Rahmen des Sonderforschungsbereichs „Transregio 227: Ultraschnelle Spindynamik“ (SFB/TRR 227). Dieser untersucht Magnetismus sowie dessen mögliche Anwendungen auf extrem kleinen Längen- und Zeitskalen. Beheimatet ist der SFB/TRR 227 an der Freien Universität Berlin und der Martin-Luther-Universität Halle-Wittenberg.

Ferrimagnete bilden die größte Klasse von Magneten und bestehen aus zwei Arten von Atomen. Ähnlich einer Kompassnadel besitzt jedes Atom ein kleines magnetisches Moment, auch Spin genannt, das von den Elektronen des Atoms erzeugt wird und so zum Magnetismus führt. Wird das Atomgitter eines Ferrimagneten erwärmt, verschwindet dessen magnetische Ordnung. Das Forscherteam hat nun elementare Schritte dieses Prozesses aufgedeckt.

„Um das Atomgitter eines YIG-Ferrimagneten augenblicklich und ausschließlich zu erwärmen, verwenden wir eine sehr spezifische und neuartige Art von Anregung: ultrakurze Laserlichtblitze bei Terahertz-Frequenzen. Danach nehmen wir eine Art Film über die Entwicklung der Magnetisierung auf“, erläutert Dr. Sebastian Mährlein von der Freien Universität. „Die schnell stattfindende Energieübertragung vom Atomgitter in die Spins, die durch die Erhitzung ausgelöst wird, führt zu einem neuartigen Zustand der Materie, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamte Magnetisierung verringert haben“, erklärt Dr. Ilie Radu vom Max-Born-Institut Berlin. Dieser „Spinüberdruck“ werde erst durch wesentlich langsamere Prozesse abgebaut, die mit einer Abgabe von Drehimpuls an das Gitter einhergehen.

„Unsere Ergebnisse können zum Beispiel in der Datenspeicherung Anwendung finden“, erläutert Dr. Sebastian Mährlein, der die Experimente durchführte. „Wann immer wir den Wert eines Bits in einem magnetischen Speichermedium zwischen 0 und 1 umschalten wollen, müssen letztlich Drehimpuls und Energie zwischen Atomgitter und Spins übertragen werden.“ Dadurch erhoffen sich die Wissenschaftler, Schlüsselelemente für eine spinbasierte Informationstechnologie zu liefern, die im Terahertz-Frequenzbereich arbeitet.

Wird ein elektrisch nichtleitender Ferrimagnet erwärmt, erreicht die Wärme zunächst das Atomgitter, wodurch sich die Atome zufällig um ihre Ruhelage bewegen. Schließlich verursacht ein Teil der Wärme auch eine zufällige Rotation (Präzession) der Spins um ihre ursprüngliche kalte Richtung. Dadurch geht die magnetische Ordnung verloren. Die Gesamtmagnetisierung nimmt ab und verschwindet schließlich, wenn die Temperatur des Ferrimagneten die sogenannte Curie-Temperatur überschreitet, die in diesem Fall bei 125°C lag. Obwohl dieser Prozess von grundlegender Bedeutung für die Datenspeicherungstechnik ist, war bislang nicht geklärt, wie lange es dauert, bis das erwärmte Atomgitter und die kalten magnetischen Spins miteinander ins Gleichgewicht kommen. Bisherige Schätzungen der Zeitdauer unterschieden sich für YIG um einen Faktor von bis zu einer Million.

Auf diese Frage haben die Wissenschaftlerinnen und Wissenschaftler nach eigener Einschätzung nun eine Antwort gefunden. Die im Magneten ablaufenden Vorgänge können den Experten zufolge analog am Beispiel von Wasser nachvollzogen werden, das sich in einem geschlossenen Topf in einem heißen Ofen befindet: Die heiße Luft des Ofens entspricht dem heißen Atomgitter im Experiment, das Wasser im Topf stellt die magnetischen Spins des Versuchs dar (siehe Abbildung A). Wird das Atomgitter durch den Terahertz-Laserblitz erwärmt, führen verstärkte zufällige Schwingungen der Atome zu einer Übertragung der magnetischen Ordnung von Spintyp 1 (blaue Pfeile in Abbildung B) auf Spintyp 2 (grüne Pfeile). Dieser Prozess läuft auf der extrem schnellen Zeitskala von einer Pikosekunde ab. Dabei heizen sich die atomaren Spins auf, ihre Gesamtmagnetisierung bleibt jedoch konstant, ähnlich wie Wasser in einem geschlossenen Topf, das sein Volumen halten muss.

Artikel

http://advances.sciencemag.org/content/4/7/eaar5164

Pressekontakte

Pressefoto

Heizen eines Magneten, ohne seine Magnetisierung zu ändern. © Sebastian Mährlein

Das Foto steht Medien zum Download zur Verfügung und ist bei Verwendung im Kontext der Pressemitteilung und bei Angabe der Quelle honorarfrei.

Heizen eines Magneten, ohne seine Magnetisierung zu ändern

Heizen eines Magneten, ohne seine Magnetisierung zu ändern. © Sebastian Mährlein

Heizen eines Magneten, ohne seine Magnetisierung zu ändern. © Sebastian Mährlein

(A) Ein Ferrimagnet besteht aus zwei Spinsorten mit entgegengesetztem magnetischem Moment (grüne und blaue Pfeile). Im Experiment wird das Atomgitter des Ferrimagneten durch einen extrem kurzen Terahertz-Lichtblitz aufgeheizt. Die Situation ist analog zum Erhitzen von Luft (entspricht dem Atomgitter) in einem Ofen, der einen Topf mit Wasser (entspricht den Spins) enthält. (B) Wärme wird in die Spins übertragen und erniedrigt die Magnetisierung jeder Spinsorte um genau denselben Betrag. Dieser Prozess läuft ab, indem Spin (rote Pfeile) von der blauen in die grüne Spinsorte übertragen wird. Folglich heizt sich der Magnet auf, ohne seine Gesamtmagnetisierung zu ändern. In der Topf-Analogie wird die Wärme der Ofenluft ins Wasser innerhalb des Topfes übertragen. Die Wassermenge im Topf hat sich dabei nicht geändert; jedoch hat sich ein Überdruck aufgebaut. (C) Der Spin-Überdruck führt schließlich zur Übertragung von Spin-Drehimpuls ins Atomgitter. Dabei verkleinert sich die Magnetisierung des Ferrimagneten. In der Topf-Analogie baut sich der Wasser-Überdruck durch kleine Lecks im Topfdeckel ab.

Das Foto steht Medienvertretern zum Herunterladen zur Verfügung. Es ist bei Verwendung im Kontext der Pressemitteilung und Angabe der Quelle honorarfrei.