Attosekunden-Elektronenkatapult
Ein Team von Physikern und Chemikern hat die Wechselwirkung von Licht und winzigen Glasteilchen erforscht
Nr. 246/2015 vom 12.08.2015
Die Beziehung zwischen starken Laserpulsen und Glas-Nanoteilchen ist eine ganz spezielle und könnte medizinische Methoden verändern, wie Wissenschaftler aus Rostock, München und Berlin herausfanden. Dieses Zusammenspiel aus Licht und Materie untersuchte ein Team von Physikern und Chemikern aus dem Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) und der Ludwig-Maximilians-Universität München (LMU) sowie den Instituten für Physik der Universität Rostock und der Freien Universität Berlin. Die Forscher ließen starke Laserpulse mit Nanoglaskügelchen, die aus mehreren Millionen Atomen bestehen, interagieren. Je nachdem, wie viele Atome in den Nanokügelchen zusammengefasst waren, reagierten die Objekte unterschiedlich, und zwar innerhalb von Attosekunden (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde). In Abhängigkeit ihrer Größe entstehen an der Oberfläche der Glaskügelchen sogenannte Nahfelder, mit denen Elektronen kontrolliert in verschiedene Richtungen ausgesendet werden konnten. Die Forschungsergebnisse könnten langfristig die Methoden bei der Bildgebung in der Medizin und bei der Krebsbekämpfung erweitern. Die Studie wurde in der jüngsten Ausgabe der Fachzeitschrift „Nature Communications“ veröffentlicht.
Wenn starke Lichtpulse auf Nanoteilchen treffen, dann bleibt in den Atomverbünden nichts, wie es war. Sobald die Atome das elektromagnetische Feld des Lichts „spüren“, fangen deren Elektronen an zu schwingen: An der Oberfläche der Kügelchen bilden sich sogenannte Nahfelder aus. Das sind elektromagnetische Felder mit Abmessungen im Nanometerbereich, die je nach Wellenlänge des eintreffenden Lichts in einer charakteristischen Weise schwingen.
Die LAP-Physiker um Professor Matthias Kling untersuchten Nanoglaskügelchen aus Siliziumdioxid mit Durchmessern zwischen 50 und 550 Nanometern, die in der Gruppe um Professor Eckart Rühl an der Freien Universität Berlin chemisch hergestellt wurden. Auf die Atomverbünde ließen die Wissenschaftler starke, rund vier Femtosekunden lange Laserpulse treffen (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Sobald die Wellen des elektromagnetischen Lichtfeldes die Nanokugeln erfasst hatten, bildeten sich an deren Oberfläche die Nahfelder aus und begannen zu pulsieren. Je größer die vom Licht getroffenen Kügelchen in dem Experiment im Vergleich zu der eingesetzten Laserwellenlänge von 720 Nanometer waren, desto weiter wanderten die Nahfelder von der Polgegend in Richtung der Rückseite der Teilchen und wirken dabei als Elektronenkatapult.
Das konnten die Forscher beobachten indem sie während des Durchgangs des Laserpulses mit Teilchendetektoren die Flugbahnen von Elektronen aufzeichneten, die genau inmitten der Nahfelder von den Nanokügelchen ausgesandt wurden. „Die Energie und Richtung der emittierten Elektronen ist in diesem Fall eng verknüpft mit der räumlichen und zeitlichen Struktur der Nahfelder. Die Emission von Elektronen selbst ist eine Art Pingpong-Spiel an der Oberfläche der Nanokügelchen, das sich mit einer Genauigkeit im Attosekundenbereich steuern lässt“, erläutert Professor Thomas Fennel von der Universität Rostock. Er führte mit seinem Team Simulationsrechnungen durch, die die mikroskopischen Vorgänge und deren Ablauf aufdecken konnten. „Die Elektronen verlassen zunächst die Kugeln, werden dann aber wieder in Richtung der Oberfläche zurückgezogen. Dort prallen sie ab und erhalten aus dem Nahfeld einen finalen, starken Impuls, der sie dann endgültig aus dem Nanoteilchen herauslöst“, ergänzt Professor Matthias Kling.
Da man mit dieser Technik die Richtung der Aussendung von Teilchen über Laserlicht kontrollieren kann, wäre hierfür eine medizinische Anwendung als Langzeitperspektive denkbar, meinen die Wissenschaftler. „Mit der gerichteten Elektronenbewegung könnte man stark gerichtet Röntgenstrahlung für die Bildgebung produzieren“, erläutert Professor Eckart Rühl. Verwendet man genügend starke Laserpulse, wäre es auch denkbar, Ionen, also geladene Atome, aus dem Nanoverbund zu lösen und damit stark gerichtete Ionenstrahlung zur Bekämpfung von Tumoren zu erhalten. Ferner könnte sich herausstellen, dass die Technik neue Perspektiven zur Materialverarbeitung jenseits des Beugungslimits eröffnet – etwa um Nanometer große Bereiche von einer Oberfläche abzutragen.
Es ist nach Einschätzung der Wissenschaftler zudem denkbar, dass die Kombination aus starken Lichtpulsen und Nanoteilchen zu einem wichtigen Baustein für die Elektronik der Zukunft werden könnte. Mit der sogenannten lichtwellengesteuerten Elektronik wäre man in der Lage, Datenübertragung und Speicherung mit der Frequenz von Lichtwellen (rund 1015 Schwingungen pro Sekunde) zu betreiben. Das wäre in etwa 100.000 Mal schneller als es gegenwärtig möglich ist.
Pressefoto
Gerichtete Elektronenbeschleunigung an Glas-Nanokugeln. Ein Femtosekunden-Laserpuls (von links kommend) trifft auf ein Glas-Nanokügelchen. Das Licht schlägt Elektronen (grün) aus dem Atomverbund.
Das Foto steht Medienvertretern zum Download zur Verfügugn und ist bei Verwendung im Kontext der Pressemitteilung und Nennung der Quelle "Martin Dulovits/woogieworks" honorarfrei.
Weitere Informationen
Die Publikation
F. Süßmann, L. Seiffert, S. Zherebtsov, V. Mondes, J. Stierle, M. Arbeiter, J. Plenge, P. Rupp, C. Peltz, A. Kessel, S.A. Trushin, B. Ahn, D. Kim, C. Graf, E. Rühl, M. F. Kling, T. Fennel. (12. August 2015): "Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.", in: Nature Communications: http://dx.doi.org/10.1038/ncomms8944 (DOI: 10.1038/ncomms8944)
Kontakt
- Prof. Dr. Matthias Kling, Arbeitsgruppe „Ultraschnelle Nanophotonik“, Labor für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und Fakultät für Physik der Ludwig-Maximilians-Universität München, Telefon: 089 / 32905 234, E-Mail: matthias.kling@physik.uni-munechen.de
- Prof. Dr. Eckart Rühl, Institut für Chemie und Biochemie der Freien Universität Berlin, Telefon: 030 / 838-52396, E-Mail: ruehl@zedat.fu-berlin.de
- Prof. Dr. Thomas Fennel, Arbeitsgruppe „Theoretische Clusterphysik und Nanophotonik“ am Institut für Physik der Universität Rostock, Telefon: 0381 / 498 6815, E-Mail: thomas.fennel@uni-rostock.de