Basic module: Topology I
Christian Haase
Comments
Course Overview This is a beginning course from the series of three courses Topology I—III:
- Basic notions: topological spaces, continuous maps, connectedness, compactness, products, coproducts, quotients.
- Groups acting on topological spaces
- Gluing constructions, simplicial complexes
- Homotopies between continuous maps, degree of a map, fundamental group.
- Seifert-van Kampen Theorem.
- Covering spaces.
- Simplicial homology
- Combinatorial applications
Suggested reading
Literature:
- M. A. Armstron: Basic Topology, Springer UTM
- Allen Hatcher: Algebraic Topology, Chapter I. Also available online from the author's website
- Jirí Matoušek: Using the Borsuk-Ulam Theorem, Springer UTX
- Mark de Longueville: A Course in Topological Combinatorics, Springer UTX
- Tammo tom Dieck: Topologie, De Gruyter Lehrbuch
- Klaus Jänich: Topologie, Springer-Verlag
- Gerd Laures, Markus Szymik: Grundkurs Topologie, Spektrum Akademischer Verlag
- James R. Munkres: Topology, Prentice Hall
25 Class schedule
Additional appointments
Thu, 2025-07-31 10:00 - 12:00Regular appointments
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)
Location:
1.3.14 Hörsaal A (Arnimallee 14)