Springe direkt zu Inhalt

Satellites Show High Productivity in the U.S. Corn Belt

Analysis of Satellite Data by NASA Scientists and Researchers at Freie Universität Berlin

№ 102/2014 from Apr 01, 2014

According to a study and analysis of satellite data by scientists at the U.S. space agency NASA and researchers at Freie Universität Berlin, the Midwest of the United States has higher photosynthetic activity than any other region in the world. Through photosynthesis, healthy plants transform light into chemical energy. In the process the chlorophyll emits part of the absorbed radiation as a fluorescent glow that is invisible to the human eye. The magnitude of the glow is an excellent indicator of the amount of photosynthesis, or gross primary production, of plants in a particular region. Investigations carried out in 2013 led by Joanna Joiner from NASA's Goddard Space Flight Center in Greenbelt, Maryland, demonstrated that the fluorescent radiation given off by plants can be derived from existing satellite data. The satellite instruments the scientists used had originally been designed for an entirely different purpose. The new research led by Luis Guanter at Freie Universität Berlin, used the data for the first time to determine the rates of photosynthesis for agricultural land. The results were published March 25 in the prestigious Proceedings of the National Academy of Sciences. Luis Guanter heads the Emmy Noether Junior Research Group GLOBFLUO at the Institute for Space Sciences at Freie Universität.

According to co-author Christian Frankenberg of NASA's Jet Propulsion Laboratory in Pasadena, Calif., "The paper shows that fluorescence is a much better proxy for agricultural productivity than anything we've had before. This can go a long way regarding monitoring – and maybe even predicting – regional crop yields."

Guanter, Joiner, and Frankenberg launched their collaboration at a 2012 workshop, hosted by the Keck Institute for Space Studies at the California Institute of Technology in Pasadena, to explore measurements of photosynthesis from space. The team noticed that on an annual basis, the tropics are the most productive. But during the Northern Hemisphere's growing season, the U.S. Corn Belt "really stands out," Frankenberg said. "Areas all over the world are not as productive as this area."

The researchers set out to describe the phenomenon observed by carefully interpreting the data from the Global Ozone Monitoring Experiment 2 (GOME-2) on Metop-A, a European meteorological satellite. Data showed that fluorescence from the Corn Belt, which extends from Ohio to Nebraska and Kansas, peaks in July at levels 40 percent greater than those observed in the Amazon.

Comparison with ground-based measurements from carbon flux towers and yield statistics confirmed the results.

The match between ground-based measurements and satellite measurements was a "pleasant surprise," said Joiner, a co-author on the paper. Ground-based measurements have a resolution of about 0.4 square miles (1 square kilometer), while the satellite measurements currently have a resolution of more than 1,158 square miles (3,000 square kilometers). The study confirms that even with coarse resolution, the satellite method could estimate the photosynthetic activity occurring inside plants at the molecular level for areas with relatively homogenous vegetation like the Corn Belt.

Challenges remain in estimating the productivity of fragmented agricultural areas, not properly sampled by current space-borne instruments. That's where missions with better resolution could help, such as NASA's Orbiting Carbon Observatory-2 – a mission planned for launch in July 2014 that will also measure solar-induced fluorescence.

The research could also help scientists improve the computer models that simulate Earth's carbon cycle, as Guanter found a strong underestimation of crop photosynthesis in models. The analysis revealed that carbon cycle models – which scientists use to understand how carbon cycles through the ocean, land and atmosphere over time – underestimate the productivity of the Corn Belt by 40 to 60 percent.

Unlike most vegetation, food crops are managed to maximize productivity. They usually have access to abundant nutrients and are irrigated. The Corn Belt, for example, receives water from the Mississippi River. Accounting for irrigation is currently a challenge for models, which is one reason why they underestimate agricultural productivity.

"If we don't take into account irrigation and other human influences in the agricultural areas, we're not going to correctly estimate the amount of carbon taken up by vegetation, particularly corn," Joiner said. "Corn plants are very productive in terms of assimilating carbon dioxide from the atmosphere. This needs to be accounted for going forward in trying to predict how much of the atmospheric carbon dioxide will be taken up by crops in a changing climate."

According to Frankenberg, the remote sensing-based techniques now available could be a powerful monitoring tool for food security, especially data from OCO-2 and in combination with data from other upcoming satellites, such as NASA's Soil Moisture Active Passive, scheduled for launch later this year.

NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

Further Information                                                                   

Further Information Online


Press Photos

Two press photos are available for download by members of the media. They may  be used free of charge in the context of this press release, provided due credit is given: © NASA.

The magnitude of fluorescence portrayed in this visualization prompted researchers to take a closer look at the productivity of the U.S. Corn Belt. The glow represents fluorescence measured from land plants in early July, over a period from 2007 to 2011.
© NASA's Goddard Space Flight Center


Unlike most vegetation, crops are made to perform. Frequent access to nutrients and irrigation results in healthy, productive plants – the glow of which can be detected by satellites.
© NASA's Goddard Space Flight Center