WiSe 25/26  
Mathematics and...  
Computer Scienc...  
Course

Computer Science

Computer Science

0086e_k150
  • Analysis II

    0084dA1.2
    • 19211601 Lecture
      Analysis II (Pavle Blagojevic)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Content

      1. Additions to Analysis I. Non-authentic integrals
      2. Uniform convergence of function sequences. Power series. Sentence of Taylor.
      3. Elements of topology. Standardized and metric spaces. Open quantities. Convergence. Completed quantities. Consistency. Compactness
      4. Differential calculus of several variables. Partial, total and continuous differentiability. Block via the inverse function. Block of implicit functions.
      5. Iterated integrals.
      6. Ordinary differential equations. Basic terms, elementary solvable differential equations, existential and unambiguous results for systems.

      Suggested reading

      • O. Forster: Analysis 1 und 2. Vieweg/Springer.
      • Königsberger, K: Analysis 1,2, Springer.
      • E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
      • H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.

  • Linear Algebra II

    0084dA1.5
    • 19211702 Practice seminar
      Practice seminar for Linear Algebra II (Marcus Weber)
      Schedule: Di 08:00-10:00, Di 14:00-16:00, Mi 12:00-14:00, Do 16:00-18:00, Fr 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
  • Computer-Oriented Mathematics I

    0084dA1.6
    • 19200501 Lecture
      Computerorientated Mathematics I (5 LP) (Claudia Schillings)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-17)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      Contents:
      Computers play an important role in (almost) all situations in life today. Computer-oriented mathematics provides basic knowledge in dealing with computers for solving mathematical problems and an introduction to algorithmic thinking. At the same time, typical mathematical software such as Matlab and Mathematica will be introduced. The motivation for the questions under consideration is provided by simple application examples from the aforementioned areas. The content of the first part includes fundamental terms of numerical calculation: number representation and rounding errors, condition, efficiency and stability.

      Homepage: All current information on lectures and lectures

      Suggested reading

      Literatur: R. Kornhuber, C. Schuette, A. Fest: Mit Zahlen Rechnen (Skript zur Vorlesung)

    • 19200502 Practice seminar
      Practice seminar for Computerorientated Mathematics I (5 LP) (N.N.)
      Schedule: Mo 12:00-14:00, Mo 14:00-16:00, Di 08:00-10:00, Di 16:00-18:00, Mi 10:00-12:00, Do 14:00-16:00, Fr 08:00-10:00 (Class starts on: 2025-10-13)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
  • Numerical Mathematics I

    0084dA1.9
    • 19212001 Lecture
      Numerics I (Volker John)
      Schedule: Mo 10:00-12:00, Mi 10:00-12:00 (Class starts on: 2025-10-13)
      Location: A7/SR 031 (Arnimallee 7)

      Comments

      Numerical methods for: iterative solution of nonlinear systems of equations (fixpoint and Newton methods), curve fitting, interpolation, numerical quadrature, and numerics for initial value problems and two point boundary value problems with ODEs. The course is taught in German.

      Suggested reading

      Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005.

      Aus dem FU-Netz auch online verfügbar.

      Es wird ein Vorlesungsskript geben.

      Link

    • 19212002 Practice seminar
      Practice seminar for Numerics I (N.N.)
      Schedule: Di 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A7/SR 031 (Arnimallee 7)
  • Academic Work in Mathematics

    0084dB1.1
    • 19226511 Seminar
      Seminar Multiscale Methods in Molecular Simulations (Luigi Delle Site)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-17)
      Location: SR A9

      Additional information / Pre-requisites

      Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.

      Comments

      Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.

      The discussion will concerns both, specific computational coding and conceptual developments.

      Suggested reading

      Related Basic Literature:

      (1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)

      (2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).

      (3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science

    • 19240317 Seminar / Undergraduate Course
      Advancing mathematics with AI (Georg Loho)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A3/SR 120 (Arnimallee 3-5)

      Comments

      The course will probably be held in German. 

    • 19247111 Seminar
      Ordinary Differential Equations (Marita Thomas)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)

      Comments

      Ordinary differential equations arise in many applications from physics, chemistry, biology or economics. This seminar extends the topics that were covered in the Analysis III course, e.g., eigenvalue problems and stability theory will be addressed. 

  • Special topics in Mathematics

    0084dB2.11
    • 19202001 Lecture
      Discrete Geometrie I (Christian Haase)
      Schedule: Di 10:00-12:00, Mi 12:00-14:00 (Class starts on: 2025-10-14)
      Location: A3/SR 120 (Arnimallee 3-5)

      Additional information / Pre-requisites

      Solid background in linear algebra. Knowledge in combinatorics and geometry is advantageous.

      Comments

      This is the first in a series of three courses on discrete geometry. The aim of the course is a skillful handling of discrete geometric structures including analysis and proof techniques. The material will be a selection of the following topics:
      Basic structures in discrete geometry

      • polyhedra and polyhedral complexes
      • configurations of points, hyperplanes, subspaces
      • Subdivisions and triangulations (including Delaunay and Voronoi)
      • Polytope theory
      • Representations and the theorem of Minkowski-Weyl
      • polarity, simple/simplicial polytopes, shellability
      • shellability, face lattices, f-vectors, Euler- and Dehn-Sommerville
      • graphs, diameters, Hirsch (ex-)conjecture
      • Geometry of linear programming
      • linear programs, simplex algorithm, LP-duality
      • Combinatorial geometry / Geometric combinatorics
      • Arrangements of points and lines, Sylvester-Gallai, Erdos-Szekeres
      • Arrangements, zonotopes, zonotopal tilings, oriented matroids
      • Examples, examples, examples
      • regular polytopes, centrally symmetric polytopes
      • extremal polytopes, cyclic/neighborly polytopes, stacked polytopes
      • combinatorial optimization and 0/1-polytopes

       

      For students with an interest in discrete mathematics and geometry, this is the starting point to specialize in discrete geometry. The topics addressed in the course supplement and deepen the understanding for discrete-geometric structures appearing in differential geometry, topology, combinatorics, and algebraic geometry.

       

       

       

       

       

       

       

       

       

      Suggested reading

      • G.M. Ziegler "Lectures in Polytopes"
      • J. Matousek "Lectures on Discrete Geometry"
      • Further literature will be announced in class.

    • 19202002 Practice seminar
      Practice seminar for Discrete Geometrie I (Sofia Garzón Mora, Christian Haase)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
  • Special topics in Pure Mathematics

    0084dB2.12
    • 19236101 Lecture
      Mathematisches Panorama (Anina Mischau, Sarah Wolf)
      Schedule: Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Comments

      This is for a course in German - Short explanation in English:

      Mathematical Panorama is a two-hour overview course for First-Semester students of Mathematics (in particular, but not only, for teacher students) that presents the wide field of modern Mathematics - its history, its topics, its problems, its methods, some basic concepts, applications, etc.

       

      Suggested reading

      • Günter M. Ziegler und Andreas Loos: Panorama der Mathematik, Springer-Spektrum 2018, in Vorbereitung (wird in Auszügen zur Verfügung gestellt)
      • Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise, Springer 2009
        • Band 1: Von den Anfängen bis Leibniz und Newton
        • Band 2: Von Euler bis zur Gegenwart
      • Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
      • Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
      • Heinz Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
      • Richard Courant und Herbert Robbins, What is Mathematics?, Oxford UP 1941 (deutsch: Springer 2010)
      • Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999

    • 19236102 Practice seminar
      Übung zu: Mathematisches Panorama (Anina Mischau)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-24)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
  • Functional Analysis

    0084dB2.2
    • 19201901 Lecture
      Functional Analysis (Dirk Werner)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Content:
      Functional analysis is the branch of mathematics dealing with the study of normed (or general topological) vector spaces and continuous mappings between them. Thus, analysis, topology and algebra are linked.
      The course deals with Banach and Hilbert spaces, linear operators and functionals as well as spectral theory of compact operators.

      Target group: Students from the 3rd/4th semester on.

      Requirements: Good command of the material of the courses Analysis I/II and Linear Algebra I/II.

      Suggested reading

      Literatur:

      • Dirk Werner: Funktionalanalysis, 8. Auflage, Springer-Verlag 2018

    • 19201902 Practice seminar
      Tutorial: Functional Analysis (Dirk Werner)
      Schedule: Do 12:00-14:00 (Class starts on: 2025-10-16)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Comments

      Inhalt:
      Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von normierten (oder allgemeiner topologischen) Vektorräumen und stetigen Abbildungen zwischen ihnen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft.
      Die Vorlesung behandelt Banach- und Hilberträume, lineare Operatoren und Funktionale sowie Spektraltheorie kompakter Operatoren.

      Zielgruppe: Studierende vom 4. Semester an.

      Voraussetzungen: Sicheres Beherrschen des Stoffs der Vorlesungen Analysis I/II und Lineare Algebra I/II.

      Literatur:

       

      • Dirk Werner: Funktionalanalysis, 6. Auflage, Springer-Verlag 2007, ISBN 978-3-540-72533-6
      • Hans Wilhelm Alt: Lineare Funktionalanalysis : eine anwendungsorientierte Einführung. 5. Auflage. Springer-Verlag, 2006, ISBN 3-540-34186-2
      • Harro Heuser: Funktionalanalysis: Theorie und Anwendung. 3. Auflage. Teubner-Verlag, 1992, ISBN 3-519-22206-X

       

  • Probability and Statistics II

    0084dB2.4
    • 19212901 Lecture
      Stochastics II (Felix Höfling)
      Schedule: Di 12:00-14:00, Do 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Additional information / Pre-requisites

      Prerequisite: Stochastics I  and  Analysis I — III.

      Comments

      Contents:

      • Basics: conditional expectation, characteristic function, convergence types, uniform integrability;
      • Construction of stochastic processes and examples: Gaussian processes, Lévy processes, Brownian motion;
      • martingales in discrete time: convergence, stopping theorems, inequalities;
      • Markov chains in discrete and continuous time: recurrence and transience, invariant measures.

      Suggested reading

      • Klenke: Wahrscheinlichkeitstheorie
      • Durrett: Probability. Theory and Examples.

      Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
      Further literature will be given during the lecture.

    • 19212902 Practice seminar
      Practice seminar for Stochastics II (Felix Höfling)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)

      Comments

      Inhalt

       

       

      • This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
        More precisely, the course will cover the following aspects of probability theory:
      • Measure theory and the Lebesgue integral
      • Convergence of random variables and 0-1 laws
      • Generating functions: branching processes and characteristic functions
      • Markov chains
      • Introduction to martingales

       

       

  • Algebra and Number Theroy

    0084dB2.5
    • 19200701 Lecture
      Algebra and Theory of Numbers (Alexander Schmitt)
      Schedule: Mo 08:00-10:00, Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      Subject matter:
      Selected topics from:

          Divisibility into rings (especially Z- and polynomial rings); residual classes and congruencies; modules and ideals
          Euclidean, principal ideal and factorial rings
          The quadratic law of reciprocity
          Primality tests and cryptography
          The structure of abel groups (or modules about main ideal rings)
          Symmetric function set
          Body extensions, Galois correspondence; constructions with compasses and rulers
          Non-Label groups (set of Lagrange, normal dividers, dissolvability, sylow groups)

    • 19200702 Practice seminar
      Practice seminar for Algebra and Theory of Numbers (Alexander Schmitt)
      Schedule: Mi 14:00-16:00, Do 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
  • Numerical Mathematics II

    0084dB3.4
    • 19202101 Lecture
      Basic Module: Numeric II (Robert Gruhlke)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.

      Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS

      Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)

    • 19202102 Practice seminar
      Practice seminar for Basic Module: Numeric II (André-Alexander Zepernick)
      Schedule: Mi 10:00-12:00, Fr 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
  • Differential Geometry I

    0084dB3.5
    • 19202601 Lecture
      Differential Geometry I (Konrad Polthier)
      Schedule: Mo 10:00-12:00, Mi 10:00-12:00 (Class starts on: 2025-10-15)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Additional information / Pre-requisites

      For further information, see Lecture Homepage.

      Comments

      Topics of the lecture will be:

      • curves and surfaces in Euclidean space,
      • metrics and (Riemannian) manifolds,
      • surface tension, notions of curvature,
      • vector fields, tensors, covariant derivative
      • geodesic curves, exponential map,
      • Gauß-Bonnet theorem, topology,
      • connection to discrete differential geometry.

      This course is a BMS course and will be held in English on request.

      Prerequisits:

      Analysis I, II, III and Linear Algebra I, II

       

       

      Suggested reading

      Literature

      • W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
      • M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
      • J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
      • C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001

    • 19202602 Practice seminar
      Practice seminar for Differential Geometry I (Tillmann Kleiner, Konrad Polthier)
      Schedule: Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • Fundamentals of Programming 0086eA1.1
    • Operating and Communication Systems 0086eA1.10
    • Database Systems 0086eA1.11
    • Programming Lab 0086eA1.12
    • Statistics for Students of Computer Science 0086eA1.13
    • Information Security 0086eA1.14
    • Software Technology 0086eA1.15
    • Academic Work in Computer Science 0086eA1.16
    • Discrete Structures in Computer Science 0086eA1.2
    • Impacts of Computer Science 0086eA1.3
    • Algorithms and Data Structures 0086eA1.4
    • Linear Algebra for Computer Scientists 0086eA1.5
    • Computer Architecture 0086eA1.6
    • Fundamentals of Theoretical Computer Science 0086eA1.7
    • Concurrent, Parallel, and Distributed Programming 0086eA1.8
    • Analysis for Computer Scientists 0086eA1.9
    • Applied Biometrics 0086eB1.1
    • Fundamentals of Data Privacy and Data Protection Law 0086eB1.10
    • Specialization: Theoretical Computer Science 0086eB1.11
    • Current Topics in Computer Science 0086eB1.12
    • Advanced Topics in Computer Science 0086eB1.13
    • Architecture of Embedded Systems 0086eB1.2
    • Data Visualization 0086eB1.3
    • Research Lab 0086eB1.4
    • Functional Programming 0086eB1.5
    • Information Theory 0086eB1.6
    • Machine Learning 0086eB1.7
    • Man-Computer Interaction 0086eB1.8
    • Practices in Professional Software Development 0086eB1.9
    • Computer-Oriented Mathematics II 0084dA1.7
    • Probability and Statistics I 0084dA1.8
    • Higher Analysis 0084dB2.1
    • Current Topics in Mathematics 0084dB2.10
    • Special topics in Applied Mathematics 0084dB2.13
    • Complex Analysis 0084dB2.3
    • Elementary Geometry 0084dB2.6
    • Geometry 0084dB2.7
    • Mathematical Project 0084dB2.9
    • Differential Equations I 0084dB3.1
    • Discrete Mathematics I 0084dB3.2
    • Algebra I 0084dB3.3
    • Topology I 0084dB3.6
    • Visualization 0084dB3.8.
    • Applied Modules: All Other Subjects 0086eC2.1
    • Applied Modules: All Other Subjects 0086eC2.2
    • Applied Modules: All Other Subjects 0086eC2.3
    • Oral Presentation of Bachelor's Thesis 0086eE1.2