SoSe 25  
Mathematics and...  
Computer Scienc...  
Course

Computer Science

Computer Science

0086e_k150
  • Operating and Communication Systems

    0086eA1.10
    • 19300701 Lecture
      Operating and Communication Systems (Larissa Groth)
      Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      The module operating and communication systems closes the gap between the hardware of a computer and the applications.

      We will cover the following topics::

      • I/O systems
      • DMA/PIO
      • Interrupt handling
      • Buffers
      • Processes/threads
      • Virtual memory
      • UNIX and Windows
      • Shells
      • Utilities
      • Peripherals and networking
      • Networks
      • Media
      • Media access
      • Protocols
      • Reference models
      • TCP/IP
      • The Internet

      Suggested reading

      • Andrew S. Tanenbaum: Computerarchitektur, 5.Auflage, Pearson Studium, 2006
      • English: Andrew S. Tanenbaum (with contributions from James R. Goodman):
      • Structured Computer Organization, 4th Ed., Prentice Hall International, 2005.

    • 19300704 PC-based Seminar
      Practice seminar for Operating and Communication Systems (Larissa Groth)
      Schedule: Mo 10:00-12:00, Mo 14:00-16:00, Di 10:00-12:00, Di 12:00-14:00, Mi 08:00-10:00, Mi 12:00-14:00, Mi 14:00-16:00, Do 10:00-12:00, Do 12:00-14:00, Do 16:00-18:00, Fr 14:00-16:00 (Class starts on: 2025-04-14)
      Location: T9/K38 Rechnerpoolraum (Takustr. 9)

      Comments

      Begleitveranstaltung zur Vorlesung 19300701

  • Database Systems

    0086eA1.11
    • 19301501 Lecture
      Database Systems (Agnès Voisard)
      Schedule: Di 14:00-16:00, Do 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Additional information / Pre-requisites

      Requirements

      • ALP 1 - Functional Programming
      • ALP 2 - Object-oriented Programming
      • ALP 3 - Data structures and data abstractions
      • OR Informatik B

      Comments

      Content

      Database design with ERM/ERDD. Theoretical foundations of relational database systems: relational algebra, functional dependencies, normal forms. Relational database development: SQL data definitions, foreign keys and other integrity constraints, SQL as applicable language: essential language elements, embedding in programming language. Application programming; object-relational mapping. Security and protection concepts. Transaction subject, transactional guaranties, synchronization of multi user operations, fault tolerance features. Application and new developments: data warehousing, data mining, OLAP.

      Project: the topics are deepened in an implementation project for student groups.

      Suggested reading

      • Alfons Kemper, Andre Eickler: Datenbanksysteme - Eine Einführung, 5. Auflage, Oldenbourg 2004
      • R. Elmasri, S. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium, 2005

    • 19301502 Practice seminar
      Practice seminar for Database systems (Muhammed-Ugur Karagülle)
      Schedule: Mo 12:00-14:00, Mo 14:00-16:00, Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 12:00-14:00, Mi 10:00-12:00, Mi 12:00-14:00, Mi 14:00-16:00, Do 08:00-10:00, Do 10:00-12:00, Do 12:00-14:00, Do 16:00-18:00, Fr 10:00-12:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
      Location: T9/SR 006 Seminarraum (Takustr. 9)
  • Programming Lab

    0086eA1.12
    • 19335804 PC-based Seminar
      Programming Lab (Lutz Prechelt)
      Schedule: Mo 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: T9/K48 Rechnerpoolraum (Takustr. 9)

      Comments

      Students work on many small practical learning tasks. They can choose these from a large set of candidate tasks in various topic areas, such as:

      • Programming languages
      • Selection and use of libraries
      • Databases and SQL
      • Automated tests
      • Debugging,
      • Working with existing code
      • Web development
      • Working with tools such as version management, package management, IDEs, testing tools etc..

      The material has enormously high relevance for building professional software development skills.
      Work is mostly done in pairs, to help with reflection and for overcoming roadblocks.

  • Statistics for Students of Computer Science

    0086eA1.13
    • 19335701 Lecture
      Statistics for Computer Science (Katinka Wolter)
      Schedule: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: T9/Gr. Hörsaal (Takustr. 9)
    • 19335702 Practice seminar
      Statistics for Computer Science Tutorials (N.N.)
      Schedule: Mo 10:00-12:00, Mo 12:00-14:00, Mo 16:00-18:00, Di 16:00-18:00, Mi 10:00-12:00, Mi 12:00-14:00, Do 10:00-12:00, Do 12:00-14:00, Fr 10:00-12:00, Fr 12:00-14:00 (Class starts on: 2025-04-14)
      Location: T9/051 Seminarraum (Takustr. 9)
  • Information Security

    0086eA1.14
    • 19335601 Lecture
      Information Security (Volker Roth)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
      Location: T9/Gr. Hörsaal (Takustr. 9)
    • 19335605 Tutorial
      Information Security Tutorials (Volker Roth)
      Schedule: Mi 16:00-18:00, Do 12:00-14:00, Do 14:00-16:00 (Class starts on: 2025-04-16)
      Location: T9/K36 Rechnerpoolraum (Takustr. 9)
  • Software Technology

    0086eA1.15
    • 19301401 Lecture
      Software Engineering (Lutz Prechelt)
      Schedule: Mo 10:00-12:00, Do 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Additional information / Pre-requisites

      Target group

      • compulsory module in BSc of Computer Science
      • elective module in Computer Science Minor
      • MSc school teacher students (Großer Master mit Zweitfach Informatik) may chose this module together with  "Praktikum SWT (19516c)", thereby replacing modules "Net programming" and "Embedded Internet"

      Requirements

      ALP III or Informatik B

      Language

      The course language is German, including all slides and practice sheets. A minority of slides is in English.

      The exam is formulated in German, but answers may be given in English, too.

      Homepage

      http://www.inf.fu-berlin.de/w/SE/VorlesungSoftwaretechnik

      Comments

      Content

      Software Engineering is the science of software construction on a grand scale, that is the basic course of systems engineering.

      Software Engineering aims at giving answers to the following questions:

      • How to find out which characterstics a software should have (requirements engineering)
      • How to describe these characteristics (specifcation)
      • How to structure software so that it may be built easily and changed flexibly (design)
      • How to change software which does not have such a structure or whose structure you do not understand (anymore) (reengineering)
      • How to disguise defects in software (quality assurance, test)
      • How to organise the tasks in a software company or department to regularly achieve cost-efficient and high-quality results (process management)
      • Which (largely common) problems underlie all of these questions and which (mostly common) general approaches underlie the methods and techniques that are used

      ...and many similar ones.

      This lecture gives an overview of the methods and provides essential basic knowledge for any computer scientist working as an engineer.

      More detailed information may be found on the homepage http://www.inf.fu-berlin.de/w/SE/VorlesungSoftwaretechnik

      Suggested reading

      Bernd Brügge, Allen Dutoit: Objektorientierte Softwaretechnik mit UML, Entwurfsmustern und Java, Pearson 2004.

    • 19301402 Practice seminar
      Practice seminar for Software Engineering (Lutz Prechelt)
      Schedule: Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 16:00-18:00, Mi 08:00-10:00, Mi 10:00-12:00, Mi 14:00-16:00, Do 10:00-12:00, Do 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-14)
      Location: T9/046 Seminarraum (Takustr. 9)
  • Academic Work in Computer Science

    0086eA1.16
    • 19319701 Lecture
      Scientific Work/Research in Computer Science (Claudia Müller-Birn)
      Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Additional information / Pre-requisites

      Further information:

      https://www.mi.fu-berlin.de/w/SE/VorlesungWissenschaftlichesArbeiten2019

       

      Comments

      The lecture introduces students to scientific work. The essential forms of written and oral knowledge representation are described. It explains how to write computer science texts and how to read and examine them. Furthermore, students will be introduced to legal, ethical and philosophical problems of the sciences and in particular of computer science. Furthermore, problems of gender and diversity in computer science and in lectures will be presented and solution strategies will be discussed.

    • 19301710 Proseminar
      Undergraduate Seminar: Theoretical Computer Science (Katharina Klost)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-04-15)
      Location: T9/055 Seminarraum (Takustr. 9)

      Comments

      Contents

      The proseminar delves more deeply into topics covered in the basic classes taught by the theory group. During the winter semester, we consider advanced topics from the theory of computability and of formal languates (in continuation of "Theory of Computation"); during the summer semester, we talk about algorithms (in continuation of "Algorithms, Data Structures, and Data Abstraction").

      Prerequisites

      two semesters of computer science, successful completion of "Theory of Computation"

      Suggested reading

      wird mit der Ankündigung bekannt gegeben

    • 19307117 Seminar / Undergraduate Course
      Seminar/Proseminar: Smart Homes and the World of IoT (Marius Max Wawerek)
      Schedule: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: T9/K63 Hardwarepraktikum (Takustr. 9)

      Comments

      This seminar focuses on various aspects of modern “Internet of Things” (IoT) systems. The main component will be applications and publications related to the area of the “Smart Home”. At the beginning of the seminar, suggested topics will be given, which will mainly deal with data analysis (both “normal” statistics and machine learning), security aspects and the usefulness of the Internet of Things or the “Smart Home”. You are also welcome to suggest your own topics, but they must be related to IoT systems. The topics should be worked on alone.

      About the procedure: This seminar takes place throughout the semester. There are few meetings, but these are mandatory. On the first date (14.04.2025) the list of topics will be handed out and discussed. In the next week (21.04.2025) there will be another opportunity to discuss topic suggestions. If you are interested in your own topic, please prepare a short (2-3 minutes) outline of your proposal. As in the third week (28.04.2025) the topics will be assigned.


      There will then be 3 presentation dates per person: the presentation of the literature research (19.05.2025), a short interim presentation (16.06.2025) and the final presentation on one of the dates in the period from 30.06.2025 - 14.07.2025. There will be no further meetings beyond this.

      This means that, depending on the number of participants, the following meetings are mandatory:

      • 14.04.2025
      • 21.04.2025
      • 19.05.2025
      • 16.06.2025
      • 30.06.2025
      • 07.07.2025
      • 14.07.2025

    • 19313310 Proseminar
      Undergraduate Seminar: Interactive Intelligent Systems - A Human-Centered Perspective (Malte Heiser)
      Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
      Location: keine Angabe

      Additional information / Pre-requisites

      Link to this course on the HCC website

       

      Comments

      In this Proseminar, we discuss research results from the field of Human Computer Interaction with a focus on computer science. In recent decades, this area has changed extensively, mainly through technological innovations. We primarily consider these changed interactions between one or more people and one or more computers.

      This time we will focus specifically on interactions with large language models (LLMs). We will explore new ways that these tools allow us to interact with technology. We will also consider the implications of generative AI for users and society at large.

      In this course, we will cover a selection of important paper on pioneering work in HCI. Each semester, the focus of the more recent work might change. Each week, one student will present one important approach, and we will discuss it in class. Within presentations students have to introduce the assigned readings, will discuss them in context and will derive new, possible topics. Articles are chosen because they describe either a specific sub-­-area, represent the first article in a specific area, or introduce different approaches in the area.

      Suggested reading

      Wird bei der Vorbesprechung im April bekanntgegeben.

    • 19331617 Seminar / Undergraduate Course
      Seminar/Proseminar: Information-theoretical principles of ML (Gerhard Wunder)
      Schedule: Fr 14:00-16:00 (Class starts on: 2025-04-25)
      Location: T9/K40 Multimediaraum (Takustr. 9)

      Comments

      Recently, artificial intelligence and machine learning (AI/ML) has emerged as a valuable tool in the field of communication and signal processing. It is therefore natural to extend the investigations to the field of physical layer security and privacy. This field is still in its infancy with some very preliminary results on wiretap channel code design, feature extraction of wireless channels and a growing part of contributions to privacy-preserving, distributed AI/ML. This seminar will teach the latest advances and synergies between the broad fields of AI/ML and secure communications.

      Keywords: ML overview, basic tools, universal approximation, deep learning, stochastic gradient, acceleration strategies, deep convolutional networks, feature extraction, classification, mutual information neural network estimation, structured sparsity in convolutional neural networks, matrix decompositions

       

    • 19336717 Seminar / Undergraduate Course
      Active learning, uncertainty and XAI with applications in biomedicine (Katharina Baum)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: T9/051 Seminarraum (Takustr. 9)

      Comments

      In this advanced seminar, we will discuss a variety of methods for machine learning. The focus will be on approaches to active learning, uncertainty estimation and its utilization, as well as methods for explaining models. The application and development of these methods for biomedical research questions will be explored using current research papers.

      Examples of approaches covered include:

      • selective sampling
      • SHAP values
      • Gaussian ensemble models
      • Bayesian neural networks

      The seminar will primarily be conducted in English, but of course, you are welcome to ask questions in German.

  • Algorithms and Data Structures

    0086eA1.4
    • 19300101 Lecture
      Algorithms and Data Structures (Wolfgang Mulzer)
      Schedule: Di 16:00-18:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: Gr. Hörsaal (Raum B.001) (Arnimallee 22)

      Comments

      Qualification goals

      The students can analyze algorithms and data structures and their implementations with respect to running time, space requirements, and correctness. The students can describe different algorithms and data structures for typical applications and know how to use them in concrete settings. They can choose appropriate algorithms and data structures for a given task and are able to adapt them accordingly. Students can explain, identify and use different paradigms for designing new algorithms.

      Contents

      • abstract machine models
      • running time, correctness and space requirements
      • worst-case analysis
      • algorithms and randomness
      • algorithmic paradigms: divide and conquer, greedy, dynamic programming, exhaustive search
      • priority queues
      • ordered and unordered dictionaries (e.g., search trees, hash tables, skiplists)
      • algorithms for strings (string searching and radix trees)
      • graph algorithms 

      Suggested reading

      • P. Morin: Open Data Structures, an open content textboox.
      • T. H. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, MIT Press, 2022.
      • R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley, 2011.
      • M. Dietzfelbinger, K. Mehlhorn, P. Sanders. Algorithmen und Datenstrukturen: Die Grundwerkzeuge, Springer, 2014.
      • J. Erickson. Algorithms, 2019
      • T. Roughgarden. Algorithms Illuminated. Cambridge University Press, 2022.

    • 19300102 Practice seminar
      Practice seminar for Algorithms and Data Structures (Wolfgang Mulzer)
      Schedule: Mo 14:00-16:00, Mo 16:00-18:00, Di 12:00-14:00, Mi 12:00-14:00, Mi 14:00-16:00, Mi 16:00-18:00, Do 16:00-18:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
      Location: T9/051 Seminarraum (Takustr. 9)
  • Linear Algebra for Computer Scientists

    0086eA1.5
    • 19301001 Lecture
      Linear Algebra for Computer Science and Bioinformatics (Max Willert)
      Schedule: Mi 16:00-18:00, Do 10:00-12:00, Fr 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
      Location: Hs 1b Hörsaal (Habelschwerdter Allee 45)

      Additional information / Pre-requisites

      The sign-up for the tutorial sessions will be announced in due time.

      Comments

      • linear algebra:
        • vector space, basis and dimension;
        • linear map, matrix and rank;
        • Gauss-elimination and linear systems of equations;
        • determinants, eigenvalues and eigenvectors;
        • euclidean vector spaces and orthonormalization;
        • principal component transformation;
        • Applications of linear algebra in affine geometry, statistics, and coding theory  (linear codes)

      Suggested reading

      • Klaus Jänich: Lineare Algebra, Springer-Lehrbuch, 10. Auflage 2004
      • Dirk Hachenberger: Mathematik für Informatiker, Pearson 2005
      • G. Grimmett, D. Welsh: Probability - An Introduction, Oxford Science Publications 1986
      • Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer-Verlag, 6. Auflage 2001
      • G. Berendt: Mathematik für Informatiker, Spektrum Akademischer Verlag 1994
      • Oliver Pretzel: Error-Correcting Codes and Finite Fields, Oxford Univ. Press 1996

    • 19301002 Practice seminar
      Practice seminar for Linear Algebra for Computer Science (Max Willert)
      Schedule: Mo 10:00-12:00, Mo 14:00-16:00, Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 12:00-14:00, Di 14:00-16:00, Di 16:00-18:00 (Class starts on: 2025-04-14)
      Location: T9/049 Seminarraum (Takustr. 9)
  • Applied Biometrics

    0086eB1.1
    • 19302801 Lecture
      Applied Biometrics (Andreas Wolf)
      Schedule: Mo 08:00-10:00 (Class starts on: 2025-04-14)
      Location: T9/K40 Multimediaraum (Takustr. 9)

      Additional information / Pre-requisites

      Die Lehrveranstaltung soll am Freitag den 12. April beginnen.

      Das Vorlesungsskript liegt unter

      https://drive.google.com/drive/folders/0B7NhYbv9QewkRkk2WVRuM2Rqd00?usp=sharing

      Webex Link zu der Veranstaltung:

      Meeting-Link: https://fu-berlin.webex.com/fu-berlin/j.php?MTID=m2cc50d96918fcaeb09f3c36a264f4f29

      Meeting-ID: 121 079 7504

      Meeting-Password: mCwDw274PS8

      Comments

      The lecture held by Dr. Andreas Wolf (from the Bundesdruckerei) He will give a broad overview of biometric processes and applications. He will also address the current issues with ePassports and new electronic identity cards.

      The course aims to include:

      • General structure of biometric systems
      • Features of biometric modalities
      • IT security and risk assessment
      • Errors in biometric processes
      • Fingerprinting
      • Facial and iris recognition
      • Speaker recognition and other modalities
      • Standards
      • ePassport

      Next to the theoretical foundations of biometric modalities, the students are to develop the ability to assess the applicability of biometrics in various scenarios.

    • 19302802 Practice seminar
      Practice seminar for Applied Biometrics (Andreas Wolf)
      Schedule: Mo 10:00-12:00 (Class starts on: 2025-04-14)
      Location: T9/K40 Multimediaraum (Takustr. 9)
  • Fundamentals of Data Privacy and Data Protection Law

    0086eB1.10
    • 19307201 Lecture
      Basics of Data Protection Law (Philip Scholz)
      Schedule: Mi 16:00-18:00 (Class starts on: 2025-04-16)
      Location: T9/051 Seminarraum (Takustr. 9)

      Additional information / Pre-requisites

      The exact date will be announced.

      Comments

      Objectives:

      • Students understand the goals and importance of a fundamental right to privacy in a digital society
      • They possess an overview of German and European data protection law (GDPR, BDSG)
      • They can explain key terms and principles of data protection law and apply them in straightforward cases
      • They can approximately judge the legality of a particular data processing
      • They understand their privacy rights
      • They understand what to look out for wrt privacy and data protection when designing a data processing system.

      Suggested reading

      Material:

      Informationsangebote im Netz:

      Literaturhinweise:

      • Tinnefeld/Buchner/Petri, Einführung in das Datenschutzrecht - Datenschutz und Informationsfreiheit in europäischer Sicht, De Gruyter, 8. Aufl. 2024
      • v. Lewinski/Rüpke/Eckhardt, Datenschutzrecht, C.H.Beck, 2. Aufl. 2022
      • Kühling/Klar/Sackmann, Datenschutzrecht, Lehrbuch/Studienliteratur, C.F. Müller, 5. Aufl. 2021
      • Laue/Kremer, Das neue Datenschutzrecht in der betrieblichen Praxis, Handbuch, Nomos, 2. Aufl. 2019
      • S. Jandt/R. Steidle, Datenschutz im Internet, Rechtshandbuch zu DSGVO und BDSG, Nomos, 2018
      • A. Roßnagel (Hrsg.), Das neue Datenschutzrecht – Europäische Datenschutz-Grundverordnung und deutsche Datenschutzgesetze, Nomos 2018
      • S. Simitis/G. Hornung/I. Spiecker gen. Döhmann (Hrsg.), Datenschutzrecht: DSGVO mit BDSG, Großkommentar, Nomos 2019
      • J. Kühling / B. Buchner, Datenschutz-Grundverordnung, Bundesdatenschutzgesetz: DSGVO/BDSG, Kommentar, C.H. Beck 4. Aufl. 2024
      • Eßer/Kramer/v. Lewinski, Datenschutz-Grundverordnung, Bundesdatenschutzgesetz und Nebengesetze, Kommentar, Wolters Kluwer 8. Aufl. 2024

    • 19307202 Practice seminar
      Practice seminar for Data Privacy (Philip Scholz)
      Schedule: Mi 18:00-19:00 (Class starts on: 2025-04-16)
      Location: T9/051 Seminarraum (Takustr. 9)
  • Specialization: Theoretical Computer Science

    0086eB1.11
    • 19315401 Lecture
      Multiplicative Weights - A Popular Algorithmic Technique with Countless Applications (Wolfgang Mulzer)
      Schedule: Di 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-15)
      Location: T9/055 Seminarraum (Takustr. 9)

      Comments

      Just like greedy algorithms, dynamic programming, or divide-and-conquer, the multiplicative weights method is a fundamental algorithmic technique with countless applications across disciplines. However, it is taught only rarely in basic classes.



      In this class, we will study the multiplicative weights method in detail. We will learn about the basic technique and its variations, explore connections to other fields such as online convex optimization and machine learning, and see the beautiful mathematics that lies behind it.



      We will also see many applications of the technique, with examples from combinatorial optimization, machine learning, algorithmic game theory, computational geometry, information theory, online algorithms, and many more. For some of the applications, we will have invited speakers who have applied the technique in their respective fields.



      The class is jointly attended by students at Sorbonne Paris Nord in Paris and will be given in a hybrid format.



      The course website can be found here: https://www.inf.fu-berlin.de/lehre/SS25/mwu/


      Suggested reading

      Wird noch bekannt gegeben.

    • 19336401 Lecture
      Advanced Course Theoretical Computer Science (Günther Rothe)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-11)
      Location: T9/055 Seminarraum (Takustr. 9)
    • 19315402 Practice seminar
      Practice seminar for Multiplicative Weights (Michaela Krüger)
      Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
    • 19336402 Practice seminar
      Advanced Course Theoretical Computer Science Tutorials (Günther Rothe)
      Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
      Location: T9/SR 006 Seminarraum (Takustr. 9)
  • Advanced Topics in Computer Science

    0086eB1.13
    • 19315401 Lecture
      Multiplicative Weights - A Popular Algorithmic Technique with Countless Applications (Wolfgang Mulzer)
      Schedule: Di 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-15)
      Location: T9/055 Seminarraum (Takustr. 9)

      Comments

      Just like greedy algorithms, dynamic programming, or divide-and-conquer, the multiplicative weights method is a fundamental algorithmic technique with countless applications across disciplines. However, it is taught only rarely in basic classes.



      In this class, we will study the multiplicative weights method in detail. We will learn about the basic technique and its variations, explore connections to other fields such as online convex optimization and machine learning, and see the beautiful mathematics that lies behind it.



      We will also see many applications of the technique, with examples from combinatorial optimization, machine learning, algorithmic game theory, computational geometry, information theory, online algorithms, and many more. For some of the applications, we will have invited speakers who have applied the technique in their respective fields.



      The class is jointly attended by students at Sorbonne Paris Nord in Paris and will be given in a hybrid format.



      The course website can be found here: https://www.inf.fu-berlin.de/lehre/SS25/mwu/


      Suggested reading

      Wird noch bekannt gegeben.

    • 19315402 Practice seminar
      Practice seminar for Multiplicative Weights (Michaela Krüger)
      Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
  • Functional Programming

    0086eB1.5
    • 19336001 Lecture
      Functional Programming (Katharina Klost)
      Schedule: Di 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)
    • 19336002 Practice seminar
      Functional Programming Tutorials (Katharina Klost)
      Schedule: Mi 16:00-18:00 (Class starts on: 2025-04-16)
      Location: T9/SR 005 Übungsraum (Takustr. 9)
  • Man-Computer Interaction

    0086eB1.8
    • 19330601 Lecture
      Human-Computer Interaction (Claudia Müller-Birn)
      Schedule: Di 10:00-12:00 (Class starts on: 2025-04-15)
      Location: T9/053 Seminarraum (Takustr. 9)

      Additional information / Pre-requisites

      Link to this course on the HCC website

      Comments

      The digital age is no longer about deciding whether to use software, but about deciding which to use. Usability, often an implicit rather than explicit requirement, significantly influences this decision. Achieving high usability and a positive user experience requires a deep understanding of user goals, hidden needs, and cognitive abilities.

      This is where the study of human-computer interaction (HCI) comes in. HCI is a field of computer science that focuses on creating human-centered technologies. However, it's important to understand that usability is not inherent in software, nor can it be developed separately as a software feature at some point in time. Usability is always contextual, and understanding that context is critical.

      Improving usability also means changing the entire software development process. The goal is to create software that, despite its complexity and wealth of information, is usable by the intended audience. To achieve this goal, we can select and apply different principles and methods depending on the development phase and project situation.

      In this Human-Computer Interaction course, we will explore these principles and methods. You will learn how to

      • Apply human-centered design methods to your development practice: We'll cover techniques for understanding and incorporating user needs and preferences into the design process.
      • Study people and collect data about their activities: You'll learn how to collect and interpret qualitative and quantitative data about user behavior and preferences.
      • Synthesize data into conceptual models that help you derive requirements: We'll teach you how to translate your findings into actionable design goals and requirements.
      • Conceptualize, design, and prototype graphical user interfaces based on requirements: You'll get hands-on experience creating user interfaces that meet these requirements.
      • Evaluate your prototypes (low-fidelity and high-fidelity) in studies: Finally, you'll learn how to conduct user testing sessions and iterate on your designs based on user feedback.

      By the end of this course, you'll have a solid foundation in HCI principles and methodologies. You'll be equipped with the skills necessary to design and develop usable interfaces that create a positive user experience. This course will help you become adept at creating software that not only meets functional requirements but also provides a satisfying user experience.

      Suggested reading

      Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). Designing the user interface: Strategies for effective human-computer interaction. Pearson.

      Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-computer interaction. Pearson Education.

      Sharp, H., Rogers, Y., & Preece, J. (2019). Interaction design: Beyond human-computer interaction (5th ed.). Wiley.

    • 19330602 Practice seminar
      Practice Seminar on Human Computer Interaction I (Malte Heiser)
      Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
      Location: T9/053 Seminarraum (Takustr. 9)
  • Analysis II

    0084dA1.2
    • 19211601 Lecture
      Analysis II (Marita Thomas)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Content

      This is the continuation of the Analysis I course taught in the previous winter term. Central topics of the course are integration in one space dimension and differential calculus of several variables. 

      Suggested reading

      • O. Forster: Analysis 1 und 2. Vieweg/Springer.
      • Königsberger, K: Analysis 1,2, Springer.
      • E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
      • H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.

    • 19211602 Practice seminar
      Practice seminar for Analysis II (Marita Thomas)
      Schedule: Mi 14:00-16:00, Do 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
      Location: 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Linear Algebra II

    0084dA1.5
    • 19211701 Lecture
      Linear Algebra II (Alexander Schmitt)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Contents:

      • Determinants
      • Eigenvalues and eigenvectors: diagonalizability, trigonalizability, set of Cayley-Hamilton, Jordanian normal form
      • Bilinear forms
      • Vectorräume with scalar product: Euclidean, unitary vectorräume, orthogonal projection, isometries, self-adjusted images, Gram-Schmidt orthonormalization methods, major axis transformation

      Prerequisites:
      Linear Algebra I
      Literature:

      Will be mentioned in the lecture.

    • 19211702 Practice seminar
      Practice seminar for Linear Algebra II (Alexander Schmitt)
      Schedule: Do 08:00-10:00, Do 10:00-12:00, Do 16:00-18:00, Fr 08:00-10:00, Fr 10:00-12:00 (Class starts on: 2025-04-17)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
  • Computer-Oriented Mathematics II

    0084dA1.7
    • 19211901 Lecture
      Computer-oriented Mathematics II (Robert Gruhlke)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Additional information / Pre-requisites

      Studierende der Mathematik (Monobachelor und Lehramt) und Bioinformatik, sowie Numerikinteressierte aus Physik, Informatik und anderen Natur- und Geisteswissenschaften.

      Comments

      Inhalt:

      Die Auswahl der behandelten numerischen Verfahren enthält Polynominterpolation, Newton-Cotes-Formeln zur numerische Integration und Euler-Verfahren für lineare Differentialgleichungen.

    • 19211902 Practice seminar
      Practice seminar for Computer-oriented Mathematics II (Robert Gruhlke)
      Schedule: Di 08:00-10:00, Di 16:00-18:00, Mi 16:00-18:00, Do 08:00-10:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
  • Numerical Mathematics I

    0084dA1.9
    • 19212001 Lecture
      Numerics I (Claudia Schillings)
      Schedule: Mo 10:00-12:00, Mi 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Comments

      Numerical methods for: iterative solution of nonlinear systems of equations (fixpoint and Newton methods), curve fitting, interpolation, numerical quadrature, and numerics of ODE systems.

      Suggested reading

      Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005.

      Aus dem FU-Netz auch online verfügbar.

      Link

    • 19212002 Practice seminar
      Practice seminar for Numerics I (N.N.)
      Schedule: Di 08:00-10:00, Di 12:00-14:00 (Class starts on: 2025-04-15)
      Location: T9/049 Seminarraum (Takustr. 9)
  • Academic Work in Mathematics

    0084dB1.1
    • 19203611 Seminar
      Proseminar/Seminar: das Buch der Beweise (Giulia Codenotti)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: A3/SR 115 (Arnimallee 3-5)

      Comments

      Inhalt: Vorträge zu Gitterproblemen in 2 (und 3) Dimensionen. Weitere Informationen finden Sie auf der Homepage des Proseminars.

    • 19213910 Proseminar
      Proseminar/Seminar on Number Theory: Geometry of Numbers (Niels Lindner)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
      Location: A3/SR 119 (Arnimallee 3-5)

      Additional information / Pre-requisites

      Nötige Vorkenntnisse: Lineare Algebra und eine gewisse Vertrautheit mit den Grundbegriffen der Algebra, etwa "Gruppe", "Ring", "Körper", "Ideal", "Normalteiler", etc.

      Comments

      This proseminar/seminar deals with Minkowski's "geometry of numbers", which does not only open up a geometric perspective on algebraic number theory, but also enables interesting applications in discrete geometry and combinatorial optimization. More precisely, we will dive into the following topics:

      * Minkowski's classical convex body theorems

      * Gaussian integers, Fermat's two-squares theorem, Legendre's four-squares theorem

      * Algebraic number fields, finiteness of the class number, Dirichlet's unit theorem

      * Linear equations over the integers: Hermite and Smith normal forms

      * Basics of lattice theory

      * Lattice basis reduction and the LLL algorithm

      * The shortest vector problem

      * Dense sphere packings

      * Khinchine's flatness theorem

      * Integer linear programming in fixed dimension

      The purpose of this list is to offer a coarse thematic overview. The precise seminar topics will be fixed later, together with the participants.

      Further information will be provided on the Whiteboard homepage of the seminar at the beginning of the lecture period.

    • 19226511 Seminar
      Seminar Multiscale Methods in Molecular Simulations (Luigi Delle Site)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
      Location: Die Veranstaltung findet in der Arnimallee 9 statt (Seminarraum).

      Additional information / Pre-requisites

      Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.

      Comments

      Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.

      The discussion will concerns both, specific computational coding and conceptual developments.

      Suggested reading

      Related Basic Literature:

      (1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)

      (2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).

      (3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science

    • 19233511 Seminar
      Geometric Group Theory (Georg Lehner)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Additional information / Pre-requisites

      Aimed at: Bachelor and masters students

      Prerequisites: Group theory. Additionally either Geometry (especially elementary non-euclidean geometry) and/or Topology (point-set topology) can be helpful.

      Comments

      Groups are best understood as symmetries of mathematical objects. Whereas finite groups can often be completely understood by their actions on vector spaces, this approach will often fail with infinite groups, such as free groups or hyperbolic groups. Geometric group theory tries to construct natural geometric objects (topological spaces such as manifolds or graphs for example) that these groups act on and allows one to classify the complexity these groups can have.

      In this seminar, we will follow Clara Löh's book on the subject. Topics will include Cayley graphs, free groups and their subgroups, quasi-isometry classes of groups, growth types of groups, hyperbolic groups and the Banach-Tarski theorem.

      Suggested reading

      Clara Löh - Geometric Group Theory

    • 19239711 Seminar
      Advanced Dynamical Systems (Bernold Fiedler)
      Schedule: Do 16:00-18:00 (Class starts on: 2025-04-17)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Comments

      Students present recent papers on topics in delay equations. Dates only by arrangement.

    • 19239911 Seminar
      Advanced Differential Equations (Bernold Fiedler)
      Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Comments

      Students present recent papers on topics in dynamical systems. Dates only by arrangement.

    • 19247111 Seminar
      Variational methods & Gamma-convergence (Marita Thomas)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)

      Comments

      This seminar addresses bachelor and master students interested in the analysis of partial differential equations (PDEs). It focuses on elliptic PDEs, where the direct method of the calculus of variations provides a powerful tool to handle linear as well as nonlinear problems by investigating the minimality properties of the functional associated with the PDE. Closely related to this is the method of Gamma-convergence, which allows it to study sequences of functionals and minimization problems. A background with courses in analysis, functional analysis, and introduction to PDEs is useful to attend the seminar, but the topics for the presentations will be adapted to the background of the participants.   The main part of the seminar will be held en block in the teaching-free period.

  • Special topics in Mathematics

    0084dB2.11
    • 19248101 Lecture
      Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
      Schedule: Mo 14:00-16:00, Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Terminhinweis: Die Veranstaltung findet regelmäßig Mo 12‒16 und Di 14‒16 Uhr statt, allerdings mit folgender Ausnahme: Aufgrund des Dies Academicus, den das Institut für Mathematik am ersten Tag des Semesters veranstaltet, gibt es in der ersten Woche abweichende Termine. Für die Einteilung in Kleingruppen, in denen man das Semester über arbeitet, ist es notwendig, beim ersten Treffen am Dienstag, 15. April von 14‒18 Uhr anwesend zu sein.
       

      Leitidee der Veranstaltung
      Ziel der Veranstaltung ist es, einen Überblick über die Bedeutung und Anwendbarkeit diverser mathematischer Gebiete im Kontext von Nachhaltigkeit zu bekommen. Ferner soll dies anhand kleinerer Probleme selbst angewendet werden können. Mathematik ist bekanntermaßen überall und besitzt eine hohe gesellschaftliche Relevanz. Insbesondere im Kontext Nachhaltigkeit sollten wir als mathematische Community Verantwortung übernehmen, einen lebenswerten Planeten zu erhalten und unsere Erkenntnisse, Methoden, Verfahren etc. gemeinwohlorientiert einzusetzen. Dies involviert auch die Aufbereitung und Kommunikation der behandelten mathematischen Themenbereiche.

      Inhaltliche Schwerpunkte
      Wir werden eine Einführung in die vier mathematischen Bereiche Optimierung, Spieltheorie, Statistik, Dynamische Systeme geben. Mittels mathematischer Modellierung werden wir identifizieren, wie diese Bereiche zum Verständnis und mit Lösungsansätzen zu Klimakrise, Verlust von Biodiversität, Ressourcenverknappung und sozialer Ungleichheit beitragen. 

      Methodische Konzeption
      Diese Veranstaltung wird durch ein zeitgemäßes didaktisches Konzept begleitet. Dazu gehören Elemente aus dem Design Thinking, New Work-Methoden wie agiles Arbeiten, aber auch der Ansatz der student agency. Dies bedeutet, dass Lernende Verantwortung für ihren Lernerfolg und Kompetenzzuwachs übernehmen, dabei aber natürlich nicht auf sich alleine gestellt sind, sondern auf diverse inhaltliche bzw. methodische Ressourcen zurückgreifen können. 

      Die inhaltliche Arbeit erfolgt in festen Kleingruppen, die zu jedem mathematischen Themenfeld ein Anwendungsszenario erarbeitet. Dazu werden kleinere reale Probleme bzw. entsprechende mathematische Forschungspaper als Aufhänger und Ausgangspunkt für die Gruppenarbeit ausgewählt. 
      Jeder dieser thematischen „eduSCRUM-Sprints“ besteht aus Planung, Durchführung, Präsentation und endet mit der Reflexion der Arbeitsweisen innerhalb des Teams.

      Zu jedem der vier mathematischen Bereiche gibt es einen Sprint von ca. drei Wochen. Zwischen den Sprints wird zu jedem Themengebiet eine kleine Challenge (zwei bis drei kurze Aufgaben) veröffentlicht, die in Gruppen bearbeitet abzugeben ist. Der Workload dieser Veranstaltung verteilt sich anteilig ungefähr wie folgt: 30% Präsenztermine (Montag & Dienstag) + 10% Challenges + 60% eduScrum-Projektarbeit
       

      Überblick über die wöchentliche Struktur der Veranstaltung 

      • Dienstag 14–16 Uhr: Die Vorlesungstermine dienen der kompakten Aufbereitung der benötigten mathematischen Gebiete und bilden damit die fundamentale  inhaltliche Grundlage für die Projektarbeit. Wir geben dabei einen Einblick in diverse mathematische Gebiete und ihren Anwendungsbezug. 
      • Projektarbeitsphase (zwischen Dienstag 16 Uhr und Montag 12 Uhr): Die Projektarbeitsphase dient dem agilen Arbeiten in Kleingruppen, welche über das Semester verteilt mehrere Anwendungen von Mathematik in SDG-Kontext erarbeiten und aufbereiten. Dabei wird sich an der Methode eduSCRUM orientiert, um über das Semester verteilt in mehreren agilen Sprints über jeweils 2-3 Wochen fokussiert zu arbeiten. Erfahrungen im agilen Arbeiten werden nicht vorausgesetzt. Die erarbeiteten Anwendungsszenarien sollen dabei jeweils passend zu den vier inhaltlichen Themenblöcken der Veranstaltung gestaltet werden, wobei die Kleingruppen durch den Einbau partizipativer Elemente an diversen Stellen Gestaltungsspielraum haben.
      • Montag 12–16 Uhr: Die „Übungstermine“ dienen dem Austausch zwischen den Gruppen, hier werden die in den Sprints erarbeiteten Themen untereinander vorgestellt und ausführlich diskutiert. Nach jedem Sprint werden innerhalb der Gruppen die Arbeitsweise reflektiert und Absprachen für den folgenden Sprint getroffen. Weiterhin können auch inhaltliche Fragen besprochen oder methodische Unterstützung bei eduScrum angeboten werden.

       

      Lernziele
      Die übergeordneten Lernziele dieser Veranstaltung verteilen sich auf fünf Bereiche: Mathematische Grundlagen verstehen und anwenden, Mathematische Modelle anwenden, Modelle beurteilen, Kommunikation von Mathematik im SDG-Kontext & Reflexion des eigenen Lernprozesses.

      Nach erfolgreicher Teilnahme an der Veranstaltung haben Teilnehmer*innen die folgenden Kompetenzen erlangt:

      • Sie verstehen die Bedeutung grundlegender mathematischer Konzepte und Verfahren (aus Optimierung, Spieltheorie, Statistik, Dynamische Systeme). Insbesondere können sie die Terminologie und mathematischen Aussagen präzise erklären und Anwendungsgebiete anhand ausgewählter inner- und außermathematischer Problemstellungen erläutern. 
      • Sie können mathematische Modelle nutzen, um reale Fragestellungen zu beschreiben und zu analysieren.  Dabei können sie verschiedene mathematische Werkzeuge und Techniken verwenden, um qualitative und quantitative Aussagen über die Auswirkungen von Entscheidungen und Maßnahmen zu treffen. 
      • Sie können die Gültigkeit, Angemessenheit und Grenzen mathematischer Modelle beurteilen, indem sie etwa Modellannahmen, verwendete Daten oder Sensitivität der Ergebnisse analysieren, um fundierte Entscheidungen über die Nutzung dieser Modelle im Bereich nachhaltiger Entwicklung zu treffen.
      • Die Ergebnisse mathematischer Analysen und Modelle können klar und prägnant an verschiedene Zielgruppen unter Nutzung verschiedener Medien und Formate kommuniziert werden. Dies geschieht mit dem Ziel, das gesellschaftliche Bewusstsein für die Bedeutung von Mathematik für BNE sowie transformative Prozesse zu fördern.
      • Sie können die eigenen Lernerfahrungen reflektieren, indem sie individuelle Stärken, Lernstrategien, Einstellungen zur Mathematik und ihr mathematisches Selbstkonzept analysieren, um ihre mathematischen Kompetenzen weiterzuentwickeln und so später ihre Rolle als mündige und verantwortungsvolle Bürger*innen in der Gesellschaft auszufüllen.

       

      Formalia & Organisatorisches
      a) Für die regelmäßige Teilnahme ist regelmäßig und in Person an den Terminen montags teilzunehmen. 
      b) Die aktive Teilnahme an der Projektarbeit besteht aus mehreren Aspekten, die über das Semester verteilt in Kleingruppen bearbeitet werden: 

      • Die im Rahmen der eduSCRUM-Sprints erarbeiteten Anwendungsszenarien werden zum Ende des Sprints präsentiert und zugleich durch ein passendes digitales Produkt gesichert. 
      • Die Challenges werden nicht differenziert bewertet, sollen aber bestanden werden.
      • Um das formale Aufschreiben von Mathematik zu lernen, ist eine kurze, nicht differenziert bewertete schriftliche Einzelleistung zu einem mathematischen Inhalt vorgesehen.

      c) Modulabschlussprüfung: Die Veranstaltung kann entweder im Modul „Spezialthemen der Mathematik“ (B.Sc. Mathematik Mono/Lehramt) oder im Modul „Ergänzungsmodul: Ausgewählte Themen A/B/C“ (M.Sc. Mathematik) belegt werden. Bitte beachten Sie, dass je nach Studiengang differenzierte inhaltliche Anforderungen gestellt werden. Beide Module entsprechen vom Workload-Umfang 10 LP. Als Modulabschlussprüfung werden vsl. mündliche Einzelprüfungen angeboten. Die Details werden in der ersten Sitzung bekanntgegeben. 
       

    • 19248102 Practice seminar
      Practice seminar for Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
      Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
  • Complex Analysis

    0084dB2.3
    • 19212801 Lecture
      Theory of Functions (Nicolas Perkowski)
      Schedule: Di 14:00-16:00, Do 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Function theory is a classical field of mathematics, which deals with the properties of complex-differentiable functions on the complex number plane and has connections to algebra, analysis, number theory and geometry.

      The concept of complex differentiability restricts real-differentiable functions from R2 to R2 to angle-preserving images. We will discover that complex-differentiable functions are quite rigid objects, but they are endowed with many amazing analytical, geometric, and visual properties.

      A major result discussed in this lecture is Cauchy's integral theorem which states that the integral of any complexly differentiable function along a closed path in the complex plane is zero. We will see many nice consequences of this result, e.g. Cauchy's integral formula, the residual theorem and a proof of the fundamental theorem of algebra, as well as modern graphical representation methods.

      Suggested reading

      Literatur:

      E. Freitag and R. Busam 'Complex analysis', (Springer) 2nd Edition 2009 (the original German version is called 'Funktionentheorie')

    • 19212802 Practice seminar
      Practice seminar for Theory of Functions (Julian Kern)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
  • Geometry

    0084dB2.7
    • 19213101 Lecture
      Geometry (Giulia Codenotti)
      Schedule: Di 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-15)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Inhalt

      Diese Vorlesung für das Bachelorstudium soll als natürliche Fortsetzung von Lineare Algebra I und II Fundamente legen für Vorlesungen/Zyklen wie Diskrete Geometrie, Algebraische Geometrie und Differenzialgeometrie.

      Sie behandelt grundlegende Modelle der Geometrie, insbesondere

      euklidische, affine, sphärische, projektive und hyperbolische Geometrie,Möbiusgeometrie, Polarität und Dualität Strukturgruppen, Messen (Längen, Winkel, Volumina), explizite Berechnungen und Anwendungen, Beispiele sowie Illustrationsthemen;

      Dabei werden weitere Bezüge hergestellt, zum Beispiel zur Funktionentheorie und zur Numerik.

      Suggested reading

      Literatur

      1. Marcel Berger. Geometry I
      2. David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray. Geometry
      3. Gerd Fischer. Analytische Geometrie
      4. V.V. Prasolov und V.M. Tikhomirov. Geometry

    • 19213102 Practice seminar
      Practice seminar for Geometry (Giulia Codenotti)
      Schedule: Mo 10:00-12:00, Mo 16:00-18:00 (Class starts on: 2025-04-14)
      Location: A3/SR 119 (Arnimallee 3-5)
  • Mathematical Project

    0084dB2.9
    • 19246021 Projekt
      Mathematical modeling in discussions of societal challenges (Sarah Wolf, Anina Mischau, Joshua Wiebe)
      Schedule: Mi 13:00-17:00 (Class starts on: 2025-04-16)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Additional information / Pre-requisites

      Die Veranstaltungen mit Schüler*innen können ggf außerhalb der üblichen Veranstaltungszeit stattfinden.

      Voraussetzungen:

      • mindestens ein Interesse an Programmieren, grundlegende Programmierkenntnisse wären wünschenswert
      • Interesse an mathematischer Modellierung und gesellschaftlichen Diskursen

       

      Comments

      Dieses Projektseminar steht in Verbindung mit „Schule@DecisionTheatreLab“, einem Experimentallabor für Wissenschaftskommunikation gefördert von der Berlin University Alliance und dem Excellenzcluster MATH+. Das Projekt entwickelt ein innovatives Kommunikationsformat basierend auf mathematischen Modellen und führt dieses mit Gruppen von Schüler*innen durch. Decision Theatres sind Diskussionsveranstaltungen, in denen Teilnehmende eine gesellschaftliche Herausforderung mit Wissenschaftler*innen diskutieren und dabei mit einem mathematischen Modell experimentieren können.

      Das Projektseminar ist interdisziplinär ausgerichtet und verbindet mathematische Forschung mit didaktischen und sozialwissenschaftlichen Perspektiven. So werden z.B. einerseits Grundlagen des Kommunikationsformats vorgestellt (bspw. mathematische und agenten-basierte Modellierung oder die Arbeit mit empirischen Informationen), aber auch ein Bezug zum Mathematikunterricht an Schulen und damit zur Vermittlung von Mathematik erarbeitet. Andererseits arbeiten die Studierenden direkt an der Vorbereitung, Durchführung, Beobachtung und Auswertung von Decision Theatre Veranstaltungen mit.

      In dem Projektseminar ist ein intensiver Austausch zwischen Studierenden aus dem Monostudiengang und aus dem Lehramtsstudiengang der Mathematik intendiert. Über das Kennenlernen von und die Mitwirkung in einem aktuellen mathematischen wie didaktischen Forschungsprojekt und dessen Abläufe wie Methoden erhalten die Studierende die Chance jeweils ihren Blick über den Tellerand ihres Studiengangs hinaus zu erweitern.

      Schwerpunkte im Bereich Mathematik für Schulen:

      • Chancen der Einbettung des Kommunikationsformates im Mathematikunterricht
      • neue Perspektiven auf Modellieren im Unterricht
      • Interaktion mit Schüler*innengruppen

      Schwerpunkte im Bereich mathematische Forschung:

      • Agenten-basierte Modelle: Definition, Implementierung, Sensitivitätsanalyse, Kalibrierung und Validierung
      • synthetische Populationen: Daten, Algorithmen, Software Tools
      • Weiterentwicklung von mathematischen Modellen im Dialog mit Nicht-Wissenschaftler*innen (z.B. Schüler*innen)

      Suggested reading

      Wird in der ersten Sitzung bekannt gegeben.

  • Differential Equations I

    0084dB3.1
    • 19215601 Lecture Cancelled
      Basic Module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
      Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Additional information / Pre-requisites

      <p>Analysis I to III and Lineare Algebra I and II.</p>¶¶

      Comments

      Dynamical Systems are concerned with anything that moves. They are typically described by ordinary, functional, or partial differential equations, or, in the case of discrete time, by iterations. In this course, we will study flows and evolutions, first integrals, the existence and uniqueness of solutions, as well as ω-limit sets and Lyapunov functions. Dynamical systems have a vast range of applications, from physics and biology to economics and engineering.

      Requirements: Analysis 1 & 2, Linear Algebra 1 & 2. An interest in applications is advantageous.

      Suggested reading

      L.C. Evans, Partial Differential Equations. Gelegentlich: W. Strauss, Partial Differential Equation. Alle Exemplare beider Texte stehen im Handapparat Ecker.

      Vorausgesetztes Material zu Analysis II und III siehe z.B. Appendices in diesem Buch (vor allem Appendix C und E (Maß- und Integrationstheorie).

    • 19215602 Practice seminar Cancelled
      Practice seminar for Basis module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
      Location: 0.1.01 Hörsaal B (Arnimallee 14)

      Comments

      Am 23. April findet keine Übung statt.

  • Discrete Mathematics I

    0084dB3.2
    • 19214701 Lecture
      Discrete Mathematics I (Ralf Borndörfer)
      Schedule: Di 14:00-16:00, Do 12:00-14:00 (Class starts on: 2025-04-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Additional information / Pre-requisites

      Target group:

      BMS students, Master and Bachelor students

      Whiteboard:

      You need access to the whiteboard in order to receive information and participate in the exercises.

      Large tutorial:

      Participation is recommended, but non-mandatory.

      Exams:

      1st exam: Thurday July 17, 14:00-16:00, room tba, i.e., in the last lecture
      2nd exam: Thursday October 09, 10:00-12:00, room tba, i.e., in the last week before the lectures of the winter semester start

      Comments

      Content:

      Selection from the following topics:

      • Enumeration (twelvefold way, inclusion-exclusion, double counting, recursions, generating functions, inversion, Ramsey's Theorem, asymptotic counting)
      • Discrete Structures (graphs, set systems, designs, posets, matroids)
      • Graph Theory (trees, matchings, connectivity, planarity, colorings)

      Suggested reading

      • J. Matousek, J. Nesetril (2002/2007): An Invitation to Discrete Mathematics, Oxford University Press, Oxford/Diskrete Mathematik, Springer Verlag, Berlin, Heidelberg.
      • L. Lovasz, J. Pelikan, K. Vesztergombi (2003): Discrete Mathemtics - Elementary and Beyond/Diskrete Mathematik, Springer Verlag, New York.
      • N. Biggs (2004): Discrete Mathematics. Oxford University Press, Oxford.
      • M. Aigner (2004/2007): Diskrete Mathematik, Vieweg Verlag, Wiesbaden/Discrete Mathemattics, American Mathematical Society, USA.
      • D. West (2011): Introduction to Graph Theory. Pearson Education, New York.

    • 19214702 Practice seminar
      Practice seminar for Discrete Mathematics I (Silas Rathke)
      Schedule: Di 16:00-18:00, Do 14:00-16:00 (Class starts on: 2025-04-22)
      Location: A3/SR 119 (Arnimallee 3-5)

      Comments

      Content:

      Selection from the following topics:

      • Counting (basics, double counting, Pigeonhole Principle, recursions, generating functions, Inclusion-Exclusion, inversion, Polya theory)
      • Discrete Structures (graphs, set systems, designs, posets, matroids)
      • Graph Theory (trees, matchings, connectivity, planarity, colorings)
      • Algorithms (asymptotic running time, BFS, DFS, Dijkstra, Greedy, Kruskal, Hungarian, Ford-Fulkerson)

  • Topology I

    0084dB3.6
    • 19205401 Lecture
      Basic module: Topology I (Christian Haase)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
      Location: 1.3.14 Hörsaal A (Arnimallee 14)

      Comments


      Course Overview This is a beginning course from the series of three courses Topology I—III:

      1. Basic notions: topological spaces, continuous maps, connectedness, compactness, products, coproducts, quotients.
      2. Groups acting on topological spaces
      3. Gluing constructions, simplicial complexes
      4. Homotopies between continuous maps, degree of a map, fundamental group.
      5. Seifert-van Kampen Theorem.
      6. Covering spaces.
      7. Simplicial homology
      8. Combinatorial applications

      Suggested reading

      Literature:

      1. M. A. Armstron: Basic Topology, Springer UTM
      2. Allen Hatcher: Algebraic Topology, Chapter I. Also available online from the author's website
      3. Jirí Matoušek: Using the Borsuk-Ulam Theorem, Springer UTX
      4. Mark de Longueville: A Course in Topological Combinatorics, Springer UTX
      5. Tammo tom Dieck: Topologie, De Gruyter Lehrbuch
      6. Klaus Jänich: Topologie, Springer-Verlag
      7. Gerd Laures, Markus Szymik: Grundkurs Topologie, Spektrum Akademischer Verlag
      8. James R. Munkres: Topology, Prentice Hall

    • 19205402 Practice seminar
      Exercise for Basic Module: Topology I (Sofia Garzón Mora)
      Schedule: Mo 16:00-18:00 (Class starts on: 2025-04-28)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
    • Fundamentals of Programming 0086eA1.1
    • Discrete Structures in Computer Science 0086eA1.2
    • Impacts of Computer Science 0086eA1.3
    • Computer Architecture 0086eA1.6
    • Fundamentals of Theoretical Computer Science 0086eA1.7
    • Concurrent, Parallel, and Distributed Programming 0086eA1.8
    • Analysis for Computer Scientists 0086eA1.9
    • Current Topics in Computer Science 0086eB1.12
    • Architecture of Embedded Systems 0086eB1.2
    • Data Visualization 0086eB1.3
    • Research Lab 0086eB1.4
    • Information Theory 0086eB1.6
    • Machine Learning 0086eB1.7
    • Practices in Professional Software Development 0086eB1.9
    • Computer-Oriented Mathematics I 0084dA1.6
    • Probability and Statistics I 0084dA1.8
    • Higher Analysis 0084dB2.1
    • Current Topics in Mathematics 0084dB2.10
    • Special topics in Pure Mathematics 0084dB2.12
    • Special topics in Applied Mathematics 0084dB2.13
    • Functional Analysis 0084dB2.2
    • Probability and Statistics II 0084dB2.4
    • Algebra and Number Theroy 0084dB2.5
    • Elementary Geometry 0084dB2.6
    • Algebra I 0084dB3.3
    • Numerical Mathematics II 0084dB3.4
    • Differential Geometry I 0084dB3.5
    • Visualization 0084dB3.8.
    • Applied Modules: All Other Subjects 0086eC2.1
    • Applied Modules: All Other Subjects 0086eC2.2
    • Applied Modules: All Other Subjects 0086eC2.3
    • Oral Presentation of Bachelor's Thesis 0086eE1.2