SoSe 25  
Centre for Teac...  
Subject 2: Math...  
Course

Master's programme in Teacher Education (120 cp)

Subject 2: Mathematics

0564a_m42
  • Analysis II (10 CP)

    0082fA2.1
    • 19211601 Lecture
      Analysis II (Marita Thomas)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Content

      This is the continuation of the Analysis I course taught in the previous winter term. Central topics of the course are integration in one space dimension and differential calculus of several variables. 

      Suggested reading

      • O. Forster: Analysis 1 und 2. Vieweg/Springer.
      • Königsberger, K: Analysis 1,2, Springer.
      • E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
      • H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.

    • 19211602 Practice seminar
      Practice seminar for Analysis II (Marita Thomas)
      Schedule: Mi 14:00-16:00, Do 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
      Location: 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Linear Algebra II (10 CP)

    0082fA2.2
    • 19211701 Lecture
      Linear Algebra II (Alexander Schmitt)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Contents:

      • Determinants
      • Eigenvalues and eigenvectors: diagonalizability, trigonalizability, set of Cayley-Hamilton, Jordanian normal form
      • Bilinear forms
      • Vectorräume with scalar product: Euclidean, unitary vectorräume, orthogonal projection, isometries, self-adjusted images, Gram-Schmidt orthonormalization methods, major axis transformation

      Prerequisites:
      Linear Algebra I
      Literature:

      Will be mentioned in the lecture.

    • 19211702 Practice seminar
      Practice seminar for Linear Algebra II (Alexander Schmitt)
      Schedule: Do 08:00-10:00, Do 10:00-12:00, Do 16:00-18:00, Fr 08:00-10:00, Fr 10:00-12:00 (Class starts on: 2025-04-17)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
  • Computer-Oriented Mathematics II

    0084dA1.7
    • 19211901 Lecture
      Computer-oriented Mathematics II (Robert Gruhlke)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Additional information / Pre-requisites

      Studierende der Mathematik (Monobachelor und Lehramt) und Bioinformatik, sowie Numerikinteressierte aus Physik, Informatik und anderen Natur- und Geisteswissenschaften.

      Comments

      Inhalt:

      Die Auswahl der behandelten numerischen Verfahren enthält Polynominterpolation, Newton-Cotes-Formeln zur numerische Integration und Euler-Verfahren für lineare Differentialgleichungen.

    • 19211902 Practice seminar
      Practice seminar for Computer-oriented Mathematics II (Robert Gruhlke)
      Schedule: Di 08:00-10:00, Di 16:00-18:00, Mi 16:00-18:00, Do 08:00-10:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
  • Special topics in Mathematics

    0084dB2.11
    • 19248101 Lecture
      Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
      Schedule: Mo 14:00-16:00, Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Terminhinweis: Die Veranstaltung findet regelmäßig Mo 12‒16 und Di 14‒16 Uhr statt, allerdings mit folgender Ausnahme: Aufgrund des Dies Academicus, den das Institut für Mathematik am ersten Tag des Semesters veranstaltet, gibt es in der ersten Woche abweichende Termine. Für die Einteilung in Kleingruppen, in denen man das Semester über arbeitet, ist es notwendig, beim ersten Treffen am Dienstag, 15. April von 14‒18 Uhr anwesend zu sein.
       

      Leitidee der Veranstaltung
      Ziel der Veranstaltung ist es, einen Überblick über die Bedeutung und Anwendbarkeit diverser mathematischer Gebiete im Kontext von Nachhaltigkeit zu bekommen. Ferner soll dies anhand kleinerer Probleme selbst angewendet werden können. Mathematik ist bekanntermaßen überall und besitzt eine hohe gesellschaftliche Relevanz. Insbesondere im Kontext Nachhaltigkeit sollten wir als mathematische Community Verantwortung übernehmen, einen lebenswerten Planeten zu erhalten und unsere Erkenntnisse, Methoden, Verfahren etc. gemeinwohlorientiert einzusetzen. Dies involviert auch die Aufbereitung und Kommunikation der behandelten mathematischen Themenbereiche.

      Inhaltliche Schwerpunkte
      Wir werden eine Einführung in die vier mathematischen Bereiche Optimierung, Spieltheorie, Statistik, Dynamische Systeme geben. Mittels mathematischer Modellierung werden wir identifizieren, wie diese Bereiche zum Verständnis und mit Lösungsansätzen zu Klimakrise, Verlust von Biodiversität, Ressourcenverknappung und sozialer Ungleichheit beitragen. 

      Methodische Konzeption
      Diese Veranstaltung wird durch ein zeitgemäßes didaktisches Konzept begleitet. Dazu gehören Elemente aus dem Design Thinking, New Work-Methoden wie agiles Arbeiten, aber auch der Ansatz der student agency. Dies bedeutet, dass Lernende Verantwortung für ihren Lernerfolg und Kompetenzzuwachs übernehmen, dabei aber natürlich nicht auf sich alleine gestellt sind, sondern auf diverse inhaltliche bzw. methodische Ressourcen zurückgreifen können. 

      Die inhaltliche Arbeit erfolgt in festen Kleingruppen, die zu jedem mathematischen Themenfeld ein Anwendungsszenario erarbeitet. Dazu werden kleinere reale Probleme bzw. entsprechende mathematische Forschungspaper als Aufhänger und Ausgangspunkt für die Gruppenarbeit ausgewählt. 
      Jeder dieser thematischen „eduSCRUM-Sprints“ besteht aus Planung, Durchführung, Präsentation und endet mit der Reflexion der Arbeitsweisen innerhalb des Teams.

      Zu jedem der vier mathematischen Bereiche gibt es einen Sprint von ca. drei Wochen. Zwischen den Sprints wird zu jedem Themengebiet eine kleine Challenge (zwei bis drei kurze Aufgaben) veröffentlicht, die in Gruppen bearbeitet abzugeben ist. Der Workload dieser Veranstaltung verteilt sich anteilig ungefähr wie folgt: 30% Präsenztermine (Montag & Dienstag) + 10% Challenges + 60% eduScrum-Projektarbeit
       

      Überblick über die wöchentliche Struktur der Veranstaltung 

      • Dienstag 14–16 Uhr: Die Vorlesungstermine dienen der kompakten Aufbereitung der benötigten mathematischen Gebiete und bilden damit die fundamentale  inhaltliche Grundlage für die Projektarbeit. Wir geben dabei einen Einblick in diverse mathematische Gebiete und ihren Anwendungsbezug. 
      • Projektarbeitsphase (zwischen Dienstag 16 Uhr und Montag 12 Uhr): Die Projektarbeitsphase dient dem agilen Arbeiten in Kleingruppen, welche über das Semester verteilt mehrere Anwendungen von Mathematik in SDG-Kontext erarbeiten und aufbereiten. Dabei wird sich an der Methode eduSCRUM orientiert, um über das Semester verteilt in mehreren agilen Sprints über jeweils 2-3 Wochen fokussiert zu arbeiten. Erfahrungen im agilen Arbeiten werden nicht vorausgesetzt. Die erarbeiteten Anwendungsszenarien sollen dabei jeweils passend zu den vier inhaltlichen Themenblöcken der Veranstaltung gestaltet werden, wobei die Kleingruppen durch den Einbau partizipativer Elemente an diversen Stellen Gestaltungsspielraum haben.
      • Montag 12–16 Uhr: Die „Übungstermine“ dienen dem Austausch zwischen den Gruppen, hier werden die in den Sprints erarbeiteten Themen untereinander vorgestellt und ausführlich diskutiert. Nach jedem Sprint werden innerhalb der Gruppen die Arbeitsweise reflektiert und Absprachen für den folgenden Sprint getroffen. Weiterhin können auch inhaltliche Fragen besprochen oder methodische Unterstützung bei eduScrum angeboten werden.

       

      Lernziele
      Die übergeordneten Lernziele dieser Veranstaltung verteilen sich auf fünf Bereiche: Mathematische Grundlagen verstehen und anwenden, Mathematische Modelle anwenden, Modelle beurteilen, Kommunikation von Mathematik im SDG-Kontext & Reflexion des eigenen Lernprozesses.

      Nach erfolgreicher Teilnahme an der Veranstaltung haben Teilnehmer*innen die folgenden Kompetenzen erlangt:

      • Sie verstehen die Bedeutung grundlegender mathematischer Konzepte und Verfahren (aus Optimierung, Spieltheorie, Statistik, Dynamische Systeme). Insbesondere können sie die Terminologie und mathematischen Aussagen präzise erklären und Anwendungsgebiete anhand ausgewählter inner- und außermathematischer Problemstellungen erläutern. 
      • Sie können mathematische Modelle nutzen, um reale Fragestellungen zu beschreiben und zu analysieren.  Dabei können sie verschiedene mathematische Werkzeuge und Techniken verwenden, um qualitative und quantitative Aussagen über die Auswirkungen von Entscheidungen und Maßnahmen zu treffen. 
      • Sie können die Gültigkeit, Angemessenheit und Grenzen mathematischer Modelle beurteilen, indem sie etwa Modellannahmen, verwendete Daten oder Sensitivität der Ergebnisse analysieren, um fundierte Entscheidungen über die Nutzung dieser Modelle im Bereich nachhaltiger Entwicklung zu treffen.
      • Die Ergebnisse mathematischer Analysen und Modelle können klar und prägnant an verschiedene Zielgruppen unter Nutzung verschiedener Medien und Formate kommuniziert werden. Dies geschieht mit dem Ziel, das gesellschaftliche Bewusstsein für die Bedeutung von Mathematik für BNE sowie transformative Prozesse zu fördern.
      • Sie können die eigenen Lernerfahrungen reflektieren, indem sie individuelle Stärken, Lernstrategien, Einstellungen zur Mathematik und ihr mathematisches Selbstkonzept analysieren, um ihre mathematischen Kompetenzen weiterzuentwickeln und so später ihre Rolle als mündige und verantwortungsvolle Bürger*innen in der Gesellschaft auszufüllen.

       

      Formalia & Organisatorisches
      a) Für die regelmäßige Teilnahme ist regelmäßig und in Person an den Terminen montags teilzunehmen. 
      b) Die aktive Teilnahme an der Projektarbeit besteht aus mehreren Aspekten, die über das Semester verteilt in Kleingruppen bearbeitet werden: 

      • Die im Rahmen der eduSCRUM-Sprints erarbeiteten Anwendungsszenarien werden zum Ende des Sprints präsentiert und zugleich durch ein passendes digitales Produkt gesichert. 
      • Die Challenges werden nicht differenziert bewertet, sollen aber bestanden werden.
      • Um das formale Aufschreiben von Mathematik zu lernen, ist eine kurze, nicht differenziert bewertete schriftliche Einzelleistung zu einem mathematischen Inhalt vorgesehen.

      c) Modulabschlussprüfung: Die Veranstaltung kann entweder im Modul „Spezialthemen der Mathematik“ (B.Sc. Mathematik Mono/Lehramt) oder im Modul „Ergänzungsmodul: Ausgewählte Themen A/B/C“ (M.Sc. Mathematik) belegt werden. Bitte beachten Sie, dass je nach Studiengang differenzierte inhaltliche Anforderungen gestellt werden. Beide Module entsprechen vom Workload-Umfang 10 LP. Als Modulabschlussprüfung werden vsl. mündliche Einzelprüfungen angeboten. Die Details werden in der ersten Sitzung bekanntgegeben. 
       

    • 19248102 Practice seminar
      Practice seminar for Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
      Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
  • Complex Analysis

    0084dB2.3
    • 19212801 Lecture
      Theory of Functions (Nicolas Perkowski)
      Schedule: Di 14:00-16:00, Do 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Function theory is a classical field of mathematics, which deals with the properties of complex-differentiable functions on the complex number plane and has connections to algebra, analysis, number theory and geometry.

      The concept of complex differentiability restricts real-differentiable functions from R2 to R2 to angle-preserving images. We will discover that complex-differentiable functions are quite rigid objects, but they are endowed with many amazing analytical, geometric, and visual properties.

      A major result discussed in this lecture is Cauchy's integral theorem which states that the integral of any complexly differentiable function along a closed path in the complex plane is zero. We will see many nice consequences of this result, e.g. Cauchy's integral formula, the residual theorem and a proof of the fundamental theorem of algebra, as well as modern graphical representation methods.

      Suggested reading

      Literatur:

      E. Freitag and R. Busam 'Complex analysis', (Springer) 2nd Edition 2009 (the original German version is called 'Funktionentheorie')

    • 19212802 Practice seminar
      Practice seminar for Theory of Functions (Julian Kern)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
  • Geometry

    0084dB2.7
    • 19213101 Lecture
      Geometry (Giulia Codenotti)
      Schedule: Di 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-15)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Inhalt

      Diese Vorlesung für das Bachelorstudium soll als natürliche Fortsetzung von Lineare Algebra I und II Fundamente legen für Vorlesungen/Zyklen wie Diskrete Geometrie, Algebraische Geometrie und Differenzialgeometrie.

      Sie behandelt grundlegende Modelle der Geometrie, insbesondere

      euklidische, affine, sphärische, projektive und hyperbolische Geometrie,Möbiusgeometrie, Polarität und Dualität Strukturgruppen, Messen (Längen, Winkel, Volumina), explizite Berechnungen und Anwendungen, Beispiele sowie Illustrationsthemen;

      Dabei werden weitere Bezüge hergestellt, zum Beispiel zur Funktionentheorie und zur Numerik.

      Suggested reading

      Literatur

      1. Marcel Berger. Geometry I
      2. David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray. Geometry
      3. Gerd Fischer. Analytische Geometrie
      4. V.V. Prasolov und V.M. Tikhomirov. Geometry

    • 19213102 Practice seminar
      Practice seminar for Geometry (Giulia Codenotti)
      Schedule: Mo 10:00-12:00, Mo 16:00-18:00 (Class starts on: 2025-04-14)
      Location: A3/SR 119 (Arnimallee 3-5)
  • Data Structures and Data Abstraction with Applications

    0084dB2.8
    • 19300101 Lecture
      Algorithms and Data Structures (Wolfgang Mulzer)
      Schedule: Di 16:00-18:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
      Location: Gr. Hörsaal (Raum B.001) (Arnimallee 22)

      Comments

      Qualification goals

      The students can analyze algorithms and data structures and their implementations with respect to running time, space requirements, and correctness. The students can describe different algorithms and data structures for typical applications and know how to use them in concrete settings. They can choose appropriate algorithms and data structures for a given task and are able to adapt them accordingly. Students can explain, identify and use different paradigms for designing new algorithms.

      Contents

      • abstract machine models
      • running time, correctness and space requirements
      • worst-case analysis
      • algorithms and randomness
      • algorithmic paradigms: divide and conquer, greedy, dynamic programming, exhaustive search
      • priority queues
      • ordered and unordered dictionaries (e.g., search trees, hash tables, skiplists)
      • algorithms for strings (string searching and radix trees)
      • graph algorithms 

      Suggested reading

      • P. Morin: Open Data Structures, an open content textboox.
      • T. H. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, MIT Press, 2022.
      • R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley, 2011.
      • M. Dietzfelbinger, K. Mehlhorn, P. Sanders. Algorithmen und Datenstrukturen: Die Grundwerkzeuge, Springer, 2014.
      • J. Erickson. Algorithms, 2019
      • T. Roughgarden. Algorithms Illuminated. Cambridge University Press, 2022.

    • 19300102 Practice seminar
      Practice seminar for Algorithms and Data Structures (Wolfgang Mulzer)
      Schedule: Mo 14:00-16:00, Mo 16:00-18:00, Di 12:00-14:00, Mi 12:00-14:00, Mi 14:00-16:00, Mi 16:00-18:00, Do 16:00-18:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
      Location: T9/051 Seminarraum (Takustr. 9)
  • Mathematical Project

    0084dB2.9
    • 19246021 Projekt
      Mathematical modeling in discussions of societal challenges (Sarah Wolf, Anina Mischau, Joshua Wiebe)
      Schedule: Mi 13:00-17:00 (Class starts on: 2025-04-16)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Additional information / Pre-requisites

      Die Veranstaltungen mit Schüler*innen können ggf außerhalb der üblichen Veranstaltungszeit stattfinden.

      Voraussetzungen:

      • mindestens ein Interesse an Programmieren, grundlegende Programmierkenntnisse wären wünschenswert
      • Interesse an mathematischer Modellierung und gesellschaftlichen Diskursen

       

      Comments

      Dieses Projektseminar steht in Verbindung mit „Schule@DecisionTheatreLab“, einem Experimentallabor für Wissenschaftskommunikation gefördert von der Berlin University Alliance und dem Excellenzcluster MATH+. Das Projekt entwickelt ein innovatives Kommunikationsformat basierend auf mathematischen Modellen und führt dieses mit Gruppen von Schüler*innen durch. Decision Theatres sind Diskussionsveranstaltungen, in denen Teilnehmende eine gesellschaftliche Herausforderung mit Wissenschaftler*innen diskutieren und dabei mit einem mathematischen Modell experimentieren können.

      Das Projektseminar ist interdisziplinär ausgerichtet und verbindet mathematische Forschung mit didaktischen und sozialwissenschaftlichen Perspektiven. So werden z.B. einerseits Grundlagen des Kommunikationsformats vorgestellt (bspw. mathematische und agenten-basierte Modellierung oder die Arbeit mit empirischen Informationen), aber auch ein Bezug zum Mathematikunterricht an Schulen und damit zur Vermittlung von Mathematik erarbeitet. Andererseits arbeiten die Studierenden direkt an der Vorbereitung, Durchführung, Beobachtung und Auswertung von Decision Theatre Veranstaltungen mit.

      In dem Projektseminar ist ein intensiver Austausch zwischen Studierenden aus dem Monostudiengang und aus dem Lehramtsstudiengang der Mathematik intendiert. Über das Kennenlernen von und die Mitwirkung in einem aktuellen mathematischen wie didaktischen Forschungsprojekt und dessen Abläufe wie Methoden erhalten die Studierende die Chance jeweils ihren Blick über den Tellerand ihres Studiengangs hinaus zu erweitern.

      Schwerpunkte im Bereich Mathematik für Schulen:

      • Chancen der Einbettung des Kommunikationsformates im Mathematikunterricht
      • neue Perspektiven auf Modellieren im Unterricht
      • Interaktion mit Schüler*innengruppen

      Schwerpunkte im Bereich mathematische Forschung:

      • Agenten-basierte Modelle: Definition, Implementierung, Sensitivitätsanalyse, Kalibrierung und Validierung
      • synthetische Populationen: Daten, Algorithmen, Software Tools
      • Weiterentwicklung von mathematischen Modellen im Dialog mit Nicht-Wissenschaftler*innen (z.B. Schüler*innen)

      Suggested reading

      Wird in der ersten Sitzung bekannt gegeben.

  • Differential Equations I

    0084dB3.1
    • 19215601 Lecture Cancelled
      Basic Module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
      Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Additional information / Pre-requisites

      <p>Analysis I to III and Lineare Algebra I and II.</p>¶¶

      Comments

      Dynamical Systems are concerned with anything that moves. They are typically described by ordinary, functional, or partial differential equations, or, in the case of discrete time, by iterations. In this course, we will study flows and evolutions, first integrals, the existence and uniqueness of solutions, as well as ω-limit sets and Lyapunov functions. Dynamical systems have a vast range of applications, from physics and biology to economics and engineering.

      Requirements: Analysis 1 & 2, Linear Algebra 1 & 2. An interest in applications is advantageous.

      Suggested reading

      L.C. Evans, Partial Differential Equations. Gelegentlich: W. Strauss, Partial Differential Equation. Alle Exemplare beider Texte stehen im Handapparat Ecker.

      Vorausgesetztes Material zu Analysis II und III siehe z.B. Appendices in diesem Buch (vor allem Appendix C und E (Maß- und Integrationstheorie).

    • 19215602 Practice seminar Cancelled
      Practice seminar for Basis module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
      Location: 0.1.01 Hörsaal B (Arnimallee 14)

      Comments

      Am 23. April findet keine Übung statt.

  • Discrete Mathematics I

    0084dB3.2
    • 19214701 Lecture
      Discrete Mathematics I (Ralf Borndörfer)
      Schedule: Di 14:00-16:00, Do 12:00-14:00 (Class starts on: 2025-04-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Additional information / Pre-requisites

      Target group:

      BMS students, Master and Bachelor students

      Whiteboard:

      You need access to the whiteboard in order to receive information and participate in the exercises.

      Large tutorial:

      Participation is recommended, but non-mandatory.

      Exams:

      1st exam: Thurday July 17, 14:00-16:00, room tba, i.e., in the last lecture
      2nd exam: Thursday October 09, 10:00-12:00, room tba, i.e., in the last week before the lectures of the winter semester start

      Comments

      Content:

      Selection from the following topics:

      • Enumeration (twelvefold way, inclusion-exclusion, double counting, recursions, generating functions, inversion, Ramsey's Theorem, asymptotic counting)
      • Discrete Structures (graphs, set systems, designs, posets, matroids)
      • Graph Theory (trees, matchings, connectivity, planarity, colorings)

      Suggested reading

      • J. Matousek, J. Nesetril (2002/2007): An Invitation to Discrete Mathematics, Oxford University Press, Oxford/Diskrete Mathematik, Springer Verlag, Berlin, Heidelberg.
      • L. Lovasz, J. Pelikan, K. Vesztergombi (2003): Discrete Mathemtics - Elementary and Beyond/Diskrete Mathematik, Springer Verlag, New York.
      • N. Biggs (2004): Discrete Mathematics. Oxford University Press, Oxford.
      • M. Aigner (2004/2007): Diskrete Mathematik, Vieweg Verlag, Wiesbaden/Discrete Mathemattics, American Mathematical Society, USA.
      • D. West (2011): Introduction to Graph Theory. Pearson Education, New York.

    • 19214702 Practice seminar
      Practice seminar for Discrete Mathematics I (Silas Rathke)
      Schedule: Di 16:00-18:00, Do 14:00-16:00 (Class starts on: 2025-04-22)
      Location: A3/SR 119 (Arnimallee 3-5)

      Comments

      Content:

      Selection from the following topics:

      • Counting (basics, double counting, Pigeonhole Principle, recursions, generating functions, Inclusion-Exclusion, inversion, Polya theory)
      • Discrete Structures (graphs, set systems, designs, posets, matroids)
      • Graph Theory (trees, matchings, connectivity, planarity, colorings)
      • Algorithms (asymptotic running time, BFS, DFS, Dijkstra, Greedy, Kruskal, Hungarian, Ford-Fulkerson)

  • Topology I

    0084dB3.6
    • 19205401 Lecture
      Basic module: Topology I (Christian Haase)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
      Location: 1.3.14 Hörsaal A (Arnimallee 14)

      Comments


      Course Overview This is a beginning course from the series of three courses Topology I—III:

      1. Basic notions: topological spaces, continuous maps, connectedness, compactness, products, coproducts, quotients.
      2. Groups acting on topological spaces
      3. Gluing constructions, simplicial complexes
      4. Homotopies between continuous maps, degree of a map, fundamental group.
      5. Seifert-van Kampen Theorem.
      6. Covering spaces.
      7. Simplicial homology
      8. Combinatorial applications

      Suggested reading

      Literature:

      1. M. A. Armstron: Basic Topology, Springer UTM
      2. Allen Hatcher: Algebraic Topology, Chapter I. Also available online from the author's website
      3. Jirí Matoušek: Using the Borsuk-Ulam Theorem, Springer UTX
      4. Mark de Longueville: A Course in Topological Combinatorics, Springer UTX
      5. Tammo tom Dieck: Topologie, De Gruyter Lehrbuch
      6. Klaus Jänich: Topologie, Springer-Verlag
      7. Gerd Laures, Markus Szymik: Grundkurs Topologie, Spektrum Akademischer Verlag
      8. James R. Munkres: Topology, Prentice Hall

    • 19205402 Practice seminar
      Exercise for Basic Module: Topology I (Sofia Garzón Mora)
      Schedule: Mo 16:00-18:00 (Class starts on: 2025-04-28)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
  • Didactics of Mathematics: Selected Topics

    0563aA1.1
    • 19230015 Advanced seminar
      Mathematics Education - Selected Topics (N.N.)
      Schedule: Mi 11:00-14:00 (Class starts on: 2025-06-04)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      The course discusses the objectives of a school-based treatment of various contents of analysis lessons, the course on analytical geometry and stochastics in upper secondary school. Selected examples are used to develop concepts for didactic analysis and reduction of individual teaching units and to discuss conclusions for teaching and with regard to the Central Abitur.

      The use of digital media (computer algebra systems, interactive whiteboards, teaching software) in the upper secondary school is demonstrated with examples. In a block seminar, first experiences with the interactive whiteboard are gained and its use in the classroom is discussed.

    • 19230115 Advanced seminar
      Mathematics Education - Selected Topics (Karin Bergmann)
      Schedule: Di 12:00-15:00 (Class starts on: 2025-04-15)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In der Veranstaltung werden Zielvorstellungen einer schulischen Behandlung verschiedener Inhalte des Analysisunterrichts, des Kurses zur Analytischen Geometrie und der Stochastik in der Sekundarstufe II erörtert. An ausgewählten Beispielen werden über die didaktische Analyse und Reduktion Konzepte einzelner Unterrichtseinheiten erarbeitet und Folgerungen für den Unterricht und in Hinblick auf das Zentralabitur diskutiert.

      Der Einsatz von digitalen Medien (Computeralgebrasysteme, interaktive Whiteboards, Unterrichtssoftware) in der gymnasialen Oberstufe wird an Beispielen aufgezeigt. In einem Blockseminar an einem Samstag (Termin n.V.) werden Erfahrungen am interaktiven Whiteboard/Panel gesammelt und dessen Einsatz im Unterricht diskutiert.

    • 19230215 Advanced seminar
      Mathematics Education - Selected Topics (Thorsten Scheiner)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-05-23)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In line with the Science Council's demand for consideration of the growing importance of media literacy, according to which teachers should be enabled to prepare students for the competent use of information and communication technologies and to make digital media available for teaching and learning processes in schools, this seminar will focus on the following topics discuss the functions and effects of digital media in teaching and learning processes, analysing the possibilities of Internet and software use in mathematics lessons and demonstrate the advantages and disadvantages of using these digital tools using selected examples.

      The focus is on the practical handling of the possibilities of the Internet and selected programs (spreadsheet and dynamic geometry software). This is to take place in the form of intensive small group work. Afterwards, it is necessary to question the use of the respective tool with regard to achieving the goals of mathematics teaching and to work out examples for a problem-adequate application.

      Forms of active participation: active participation in discussions, working on tasks, presentations of projects. The module examination takes the form of an exam (60 min).

  • Didactics of Mathematics: Development, Evaluation, and Research

    0563aA1.2
    • 19230515 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Brigitte Lutz-Westphal)
      Schedule: Di 09:00-12:00 (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

      Suggested reading

      Ruf, Urs & Gallin, Peter (1998 bzw. spätere Auflagen): Dialogisches Lernen in Sprache und Mathematik, Band 1 und 2

      Ruf, Urs; Keller, Stefan & Winter, Felix (2008): Besser lernen im Dialog

      lerndialoge.ch

    • 19230615 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Benedikt Weygandt)
      Schedule: Mo 09:00-12:00, Fr 14:00-14:30 (Class starts on: 2025-04-11)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

    • 19230815 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Thorsten Scheiner)
      Schedule: So Sa 10:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-05-30)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Titel des Seminars: Stärkenbasierter Mathematikunterricht: Individuelle Förderung und positive Lernkultur

      Seminarbeschreibung: Dieses Seminar zielt darauf ab, Lehramtsstudierende darin zu befähigen, die mathematischen Stärken ihrer Schüler:innen zu erkennen und gezielt zu fördern. Mithilfe praxisorientierter Analysewerkzeuge und der Reflexion realer Schülerbeispiele lernen die Teilnehmer:innen, wie sie ein unterstützendes und motivierendes Lernumfeld gestalten können, das die individuellen Potenziale aller Schüler:innen entfaltet. Ein besonderer Schwerpunkt liegt dabei auf der Förderung einer positiven Lernatmosphäre, die wesentlich zur Entwicklung einer positiven mathematischen Identität und Selbstwirksamkeit beiträgt.

      Das Seminar findet als Blockveranstaltung an zwei Wochenenden statt (siehe Termine).

      Aktive Teilnahmeformen umfassen das Lesen fachlicher Texte, das Verfassen schriftlicher Aufgaben, die Analyse von Schülerarbeiten, das Üben von Wahrnehmungsfähigkeiten sowie die engagierte Teilnahme an den Seminareinheiten. Zusätzlich erstellen die Teilnehmenden ein Reflexionsportfolio.

      Modulprüfung: Hausarbeit  

  • Elective Module: Specialization in Didactics of Mathematics

    0563aA1.24
    • 19230015 Advanced seminar
      Mathematics Education - Selected Topics (N.N.)
      Schedule: Mi 11:00-14:00 (Class starts on: 2025-06-04)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      The course discusses the objectives of a school-based treatment of various contents of analysis lessons, the course on analytical geometry and stochastics in upper secondary school. Selected examples are used to develop concepts for didactic analysis and reduction of individual teaching units and to discuss conclusions for teaching and with regard to the Central Abitur.

      The use of digital media (computer algebra systems, interactive whiteboards, teaching software) in the upper secondary school is demonstrated with examples. In a block seminar, first experiences with the interactive whiteboard are gained and its use in the classroom is discussed.

    • 19230115 Advanced seminar
      Mathematics Education - Selected Topics (Karin Bergmann)
      Schedule: Di 12:00-15:00 (Class starts on: 2025-04-15)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In der Veranstaltung werden Zielvorstellungen einer schulischen Behandlung verschiedener Inhalte des Analysisunterrichts, des Kurses zur Analytischen Geometrie und der Stochastik in der Sekundarstufe II erörtert. An ausgewählten Beispielen werden über die didaktische Analyse und Reduktion Konzepte einzelner Unterrichtseinheiten erarbeitet und Folgerungen für den Unterricht und in Hinblick auf das Zentralabitur diskutiert.

      Der Einsatz von digitalen Medien (Computeralgebrasysteme, interaktive Whiteboards, Unterrichtssoftware) in der gymnasialen Oberstufe wird an Beispielen aufgezeigt. In einem Blockseminar an einem Samstag (Termin n.V.) werden Erfahrungen am interaktiven Whiteboard/Panel gesammelt und dessen Einsatz im Unterricht diskutiert.

    • 19230215 Advanced seminar
      Mathematics Education - Selected Topics (Thorsten Scheiner)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-05-23)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In line with the Science Council's demand for consideration of the growing importance of media literacy, according to which teachers should be enabled to prepare students for the competent use of information and communication technologies and to make digital media available for teaching and learning processes in schools, this seminar will focus on the following topics discuss the functions and effects of digital media in teaching and learning processes, analysing the possibilities of Internet and software use in mathematics lessons and demonstrate the advantages and disadvantages of using these digital tools using selected examples.

      The focus is on the practical handling of the possibilities of the Internet and selected programs (spreadsheet and dynamic geometry software). This is to take place in the form of intensive small group work. Afterwards, it is necessary to question the use of the respective tool with regard to achieving the goals of mathematics teaching and to work out examples for a problem-adequate application.

      Forms of active participation: active participation in discussions, working on tasks, presentations of projects. The module examination takes the form of an exam (60 min).

    • 19230515 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Brigitte Lutz-Westphal)
      Schedule: Di 09:00-12:00 (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

      Suggested reading

      Ruf, Urs & Gallin, Peter (1998 bzw. spätere Auflagen): Dialogisches Lernen in Sprache und Mathematik, Band 1 und 2

      Ruf, Urs; Keller, Stefan & Winter, Felix (2008): Besser lernen im Dialog

      lerndialoge.ch

    • 19230615 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Benedikt Weygandt)
      Schedule: Mo 09:00-12:00, Fr 14:00-14:30 (Class starts on: 2025-04-11)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

    • 19230815 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Thorsten Scheiner)
      Schedule: So Sa 10:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-05-30)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Titel des Seminars: Stärkenbasierter Mathematikunterricht: Individuelle Förderung und positive Lernkultur

      Seminarbeschreibung: Dieses Seminar zielt darauf ab, Lehramtsstudierende darin zu befähigen, die mathematischen Stärken ihrer Schüler:innen zu erkennen und gezielt zu fördern. Mithilfe praxisorientierter Analysewerkzeuge und der Reflexion realer Schülerbeispiele lernen die Teilnehmer:innen, wie sie ein unterstützendes und motivierendes Lernumfeld gestalten können, das die individuellen Potenziale aller Schüler:innen entfaltet. Ein besonderer Schwerpunkt liegt dabei auf der Förderung einer positiven Lernatmosphäre, die wesentlich zur Entwicklung einer positiven mathematischen Identität und Selbstwirksamkeit beiträgt.

      Das Seminar findet als Blockveranstaltung an zwei Wochenenden statt (siehe Termine).

      Aktive Teilnahmeformen umfassen das Lesen fachlicher Texte, das Verfassen schriftlicher Aufgaben, die Analyse von Schülerarbeiten, das Üben von Wahrnehmungsfähigkeiten sowie die engagierte Teilnahme an den Seminareinheiten. Zusätzlich erstellen die Teilnehmenden ein Reflexionsportfolio.

      Modulprüfung: Hausarbeit  

    • 19233115 Advanced seminar
      X-Student Research Group (Jan-Hendrik de Wiljes)
      Schedule: Do 09:00-12:00 (Class starts on: 2025-04-17)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematics Education are part of the German teacher-training and held in German only.

  • Elective module: proseminar Mathematics - specialisation for teaching

    0563aA1.25
    • 19200810 Proseminar
      Undergraduate Seminar: History + Contextualization of Mathematics (Anina Mischau)
      Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      This proseminar, specially designed for teacher training students, focuses on the discovery and development of mathematics as part of culture and society. From the point of view of "becoming mathematics", the main focus will be on the intra-mathematical development of selected mathematical topics and findings, their historical and cultural contextualisation and the actors involved in this development. In addition, some of these topics and findings will be examined as examples of where and to what extent they have found their way into other areas and contexts, e.g. in art, music, architecture or other scientific disciplines. In the second part of the proseminar, students will prepare small projects independently in group work on a mathematical topic of their choice and present them in the course.

      Suggested reading

      ... wird im Seminar bekannt gegeben.

    • 19230410 Proseminar
      Proseminar: Exploring randomness (Julian Kern)
      Schedule: Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-25)
      Location: A3/SR 115 (Arnimallee 3-5)

      Additional information / Pre-requisites

      The date in the first lecture week is cancelled. Instead, there will be an additional block date at the end of the semester on which all talks will be presented. The date will be discussed in the first meeting of the proseminar.

      Target group: Bachelor students (mono and combined)
      Prerequisites: None (topics will be adapted to previous knowledge)

      Comments

      Content: Students work independently and in groups on a project and present their results. The basis for assessment are not the research results, but the research process itself. At the end, the results are presented in the form of talks. A list of possible topics is discussed on the first date and adapted to the students' previous knowledge. All topics are from the field of probability theory.

      Suggested reading

      Keine

    • 19234810 Proseminar
      Women in the History of Mathematics and Computer Science (Anina Mischau)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Additional information / Pre-requisites

      For mathematicians and computer scientists in a monobachelor's degree, creditable as ABV!

      Comments

      The seminar focuses on the development and rediscovery of the life stories and the work of some important mathematicians and computer scientists in the 19th and 20th centuries. The life and work of Sophie Germaine (1776-1831), Ada Lovelace (1815-1852), Sonja Kovalevskaya (1850-1891), Emmy Noether (1882-1935), Ruth Moufang (1905-1977), Grace Murray Hopper (1906-1992) and other female scientists are examined.

      The seminar is not about highlighting these women as an exception, because it would only set them on their exotic status. Rather, it is about a historical contextualization of their life and work. This not only enables an exemplary examination of social and cultural inclusion and exclusion processes along the gender category, but also the development of new perspectives on the traditional cultural history of both disciplines. The seminar is based on the approach of researching or discovering learning, i.e. the students will independently prepare and present individual seminar topics in group work. These presentations will then be discussed in the seminar. Through the use of observation sheets, a feedback culture is also to be tested that will be helpful in dealing with pupils and/or colleagues in later professional life.

    • 19241710 Proseminar
      Proseminar Mathematics Panorama (Anna Maria Hartkopf)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-09-24)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Detaillierte Informationen finden Sie auf der Webseite zum Seminar Panorama der Mathematik.

      Inhalt: Im Seminar Panorama der Mathematik sollen in Absprache mit den Teilnehmern ausgewählte Themen aus der älteren und jüngeren Geschichte der Mathematik herausgegriffen und untersucht werden. Denkbare Themen sind zum Beispiel die Entwicklung von Algorithmen wie Newton-Verfahren, Gauss-Elimination, Matrix-Multiplikation, Simplex-Verfahren etc., die Entwicklung von Bereichen der Mathematik wie Invariantentheorie, Mengenlehre, Topologie o.ä.. Dabei sollen auch moderne Aspekte berücksichtigt werden, etwa aktuelle Anwendungen, Forschungsstand, Ergebnisse aus der jüngeren Vergangenheit.

      Suggested reading

      1. Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise;
      2. Band 1: Von den Anfängen bis Leibniz und Newton, Band 2: Von Euler bis zur Gegenwart, Springer 2009
      3. Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
      4. Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
      5. Heinz-Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
      6. Richard Courant und Herbert Robbins, Was ist Mathematik?, Springer 2010
      7. Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999
      8. Knoebel, Arthur; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David
      9. Mathematical masterpieces, Springer 2007
      10. Laubenbacher, Reinhard; Pengelley, David, Mathematical expeditions. Chronicles by the explorers, Springer 1999
      11. sowie abhängig vom Thema

    • 19245610 Proseminar
      Proseminar Mathematik - Lehramt (Brigitte Lutz-Westphal)
      Schedule: Mo 08:00-10:00 (Class starts on: 2025-04-14)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Additional information / Pre-requisites

      Der Titel dieses Seminares ist „Was genau soll ich unterrichten? Schulmathematik neu entdeckt“.

      Dabei werden wir ausgewählte Lehrplanthemen gründlich durchdenken und das dafür benötigte Fachwissen genauer beleuchten. Eine solche „Sachanalyse“ ist die Basis für jegliche Unterrichtsplanung, wie sie in den späteren Fachdidaktik-Modulen Stück für Stück erarbeitet wird. Eine aktive Mitarbeit in den Seminarsitzungen wird erwartet. (Die Themen dieses Proseminars eigenen sich evtl. nicht als Themen für die in der Fachwissenschaft anzufertigende Bachelorarbeit!)

       

      Comments

      Dieses Proseminar richtet sich ausdrücklich an Lehramtsstudierende bereits ab dem 2. Fachsemester Mathematik.
      Es folgt einem neuen Konzept, das wir erproben wollen, um schon zu Beginn des Lehramtsstudiums bereits den Blick stärker in Richtung Schule und Unterricht wenden zu können. Auch höhere Semester sind willkommen.

      Achtung, das Seminar beginnt erst am Montag, den 28.04.! Am Montag 14.04. finden wegen des Dies Academicus keine Lehrveranstaltungen statt und am Montag 21.04. ist ein Feiertag.

      Suggested reading

      Literatur wird im Seminar bekannt gegeben.

    • 19245910 Proseminar
      Undergraduate Seminar: XSRG (Jan-Hendrik de Wiljes)
      Schedule: Do 09:00-12:00 (Class starts on: 2025-04-17)
      Location: Virtueller Raum 02

      Additional information / Pre-requisites

      Voraussetzungen: Mindestens 2-3 Anfangsvorlesungen in Mathematik, insbesondere Lineare Algebra, sollten besucht worden sein. Es wird nicht so sehr um die dort vermittelten Inhalte gehen, sondern vielmehr darum, mathematisches Arbeiten an der Hochschule (Definition, Satz, Beweis, Problemlösen) kennengelernt zu haben.

      Comments

      Hinweise

      • Wichtig: Dieses Proseminar dient nur als Platzhalter-Veranstaltung für die X-Student Research Group, die als Präsenzveranstaltung Do 9‒12 Uhr in Raum 024/A3 stattfindet. 
      • XSRGs sind studentische Forschungsgruppen, weitere Infos zu diesem Format unter: https://www.berlin-university-alliance.de/commitments/teaching-learning/sturop/research-groups/index.html 
      • Teilnahme: Insgesamt gibt es 15 Plätze. Um einen Platz zu erhalten, muss man am ersten Veranstatlungstermin physisch anwesend sein. Bei mehr als 15 Personen entscheidet das Los.
      • Die erfolgreiche Teilnahme an dem XSRG-Modul gibt 5 LP (unbenotet, nur pass/fail). Anschließend kann beim jeweiligen Prüfungsbüro ein Antrag gestellt werden, um dieses Modul im ABV-Bereich (alle Studiengänge) anzurechnen. Je nach Studiengang wurde die XSRG in der Vergangenheit beispielsweise auch schon als fachdidaktisches Wahlmodul oder mathematisches Proseminar angerechnet. 
      • Bei Fragen gerne im Vorfeld an weygandt@math.fu-berlin.de und jan.dewiljes@math.fu-berlin.de wenden.

       

      XSRG „Mathematiklehre bottom-up denken“

      Was passiert eigentlich, wenn Studierende Hochschullehre reflektieren und lernförderlich (um)gestalten?

      Es ist immer einfach, bestehende Konzepte zu kritisieren ‒ aber davon alleine ändert sich ja nichts! Daher wollen wir euch die einmalige Gelegenheit geben, eure Erfahrungen, Expertise und Perspektive als Lernende in die Weiterentwicklung guter Hochschullehre einzubringen. 

      Lassen wir uns dafür mal auf ein ‒ vielleicht verrücktes? ‒ Gedankenexperiment ein:

      • Was würde herauskommen, wenn Studierende eine für sie selbst sinnvolle und gute Mathe-Vorlesung gestalten? Oder gleich ein ganzes Modul?
      • Welche Art von Tutorien haltet ihr für sinnvoll? Welche Tätigkeiten (denken, nachrechnen, diskutieren ...) sollten in den jeweiligen Veranstaltungen (VL, Übung, Zentralübung...) in welchem Format (frontal, einzeln, Gruppe ...) passieren?
      • Und was ist mit dem Material: Wie sollten Übungsaufgaben aussehen? Skripte? Klausuren?

      Ablauf

      Zur Inspiration beginnen wir mit einer kurzen Einführung in die Hochschulmathematikdidaktik und u.a. auch einem Besuch beim University:Future Festival.

      Anschließend widmen wir uns in Kleingruppen unterschiedlichen Mathematik-Veranstaltungen aus euren Studiengängen. Infrage kommt alles von Mathematik entdecken über Analysis I, Mathematik für Physiker*innen I, die Nebenfachvorlesung im Medizinstudium bis hin zu Höherer Topologie VIII ‒ wichtig ist, dass ihr damit Erfahrungen gemacht habt!

      Die von euch erarbeiteten Ideen, Ansätze und Konzepte können wir anschließend auch mit Hochschullehrenden diskutieren und ausprobieren! 

       

      Suggested reading

      Die Literatur wird bei der Vorbesprechung bekanntgegeben. Zur Einstimmung kann man bereits etwas in einem der Bände der Reihe Winning Ways for Your Mathematical Plays von Berlekamp, Conway und Guy schmökern.

      Unbedingt zur Seminarvorbereitung lesen:

      M. Lehn: Wie halte ich einen Seminarvortrag?

  • Elective Module: Gender and Diversity in Mathematics Teaching

    0563aA1.28
    • 19233011 Seminar
      Elective Module - Gender & Diversity (Anina Mischau)
      Schedule: Sa 09:00-16:30, zusätzliche Termine siehe LV-Details (Class starts on: 2025-05-03)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Refer to German description. Courses of Mathematics Education are part of the German teacher-training and held in German only.

    • 19234810 Proseminar
      Women in the History of Mathematics and Computer Science (Anina Mischau)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Additional information / Pre-requisites

      For mathematicians and computer scientists in a monobachelor's degree, creditable as ABV!

      Comments

      The seminar focuses on the development and rediscovery of the life stories and the work of some important mathematicians and computer scientists in the 19th and 20th centuries. The life and work of Sophie Germaine (1776-1831), Ada Lovelace (1815-1852), Sonja Kovalevskaya (1850-1891), Emmy Noether (1882-1935), Ruth Moufang (1905-1977), Grace Murray Hopper (1906-1992) and other female scientists are examined.

      The seminar is not about highlighting these women as an exception, because it would only set them on their exotic status. Rather, it is about a historical contextualization of their life and work. This not only enables an exemplary examination of social and cultural inclusion and exclusion processes along the gender category, but also the development of new perspectives on the traditional cultural history of both disciplines. The seminar is based on the approach of researching or discovering learning, i.e. the students will independently prepare and present individual seminar topics in group work. These presentations will then be discussed in the seminar. Through the use of observation sheets, a feedback culture is also to be tested that will be helpful in dealing with pupils and/or colleagues in later professional life.

  • Student Teaching Lab: Mathematics (Subject 2)

    0564aA1.3
    • 19231011 Seminar
      Practical Teaching Studies in Mathematics - Preparatory Seminar (Alexandra Rezmer)
      Schedule: Di 12:00-14:00 (Class starts on: 2025-04-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematis Education are part of the German teacher-training and held in German only.

    • 19231111 Seminar
      Practical Teaching Studies in Mathematics - Preparatory Seminar (N.N.)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-06-02)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematis Education are part of the German teacher-training and held in German only.

    • 19231211 Seminar Cancelled
      Practical Teaching Studies in Mathematics - Preparatory Seminar
      Schedule: Mo 16:00-18:00 (Class starts on: 2025-04-28)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematis Education are part of the German teacher-training and held in German only.

    • Numbers, Equations, Algebraic Structures (10 CP) 0082fA2.3
    • Computer-Oriented Mathematics I 0084dA1.6
    • Higher Analysis 0084dB2.1
    • Functional Analysis 0084dB2.2
    • Probability and Statistics II 0084dB2.4
    • Algebra I 0084dB3.3
    • Numerical Mathematics II 0084dB3.4
    • Differential Geometry I 0084dB3.5
    • Advanced and Applied Algorithms 0084dB3.7
    • Visualization 0084dB3.8.
    • Computer Algebra 0162bA1.2
    • Elective Module: Mathematical Panorama 2A 0563aA1.26
    • Elective Module: Mathematical Panorama 2B 0563aA1.27