AUSGELAUFEN: Lehramt Gymnasium – Quereinstieg (ab 2016 bis Ende SoSe 2021)
Subject Didactics
0513a_m72-
Analysis I
0084dA1.1-
19202801
Lecture
Analysis I (Pavle Blagojevic)
Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/Gr. Hörsaal (Takustr. 9)
Comments
Content:
This is the first part of a three semester introduction into the basic mathematical field of Analysis. Differential and integral calculus in a real variable will be covered. Topics:- fundamentals, elementary logic, ordered pairs, relations, functions, domain and range of a function, inverse functions (injectivity, surjectivity)
- numbers, induction, calculations in R, C
- arrangement of R, maximum and minimum, supremum and infimum of real sets, supremum / infimum completeness of R, absolute value of a real number, Q is dense in R
- sequences and series, limits, cauchy sequences, convergence criteria, series and basic principles of convergence
- topological aspects of R, open, closed, and compact real sets
- sequences of functions, series of functions, power series
- properties of functions, boundedness, monotony, convexity
- continuity, limits and continuity of functions, uniform continuity, intermediate value theorems, continuity and compactness
- differentiability, concept of the derivative, differentiation rules, mean value theorem, local and global extrema, curvature, monotony, convexity
- elementary functions, rational functions, root functions, exponential functions, angular functions, hyperbolic functions, real logarithm, inverse trigonometric functions, curve sketching
- beginnings of integral calculus
Detailed Information can be found on the Homepage of 19202801 Analysis I.
Suggested reading
Literature:
- Bröcker, Theodor: Analysis 1, Spektrum der Wissenschaft-Verlag.
- Forster, Otto: Analysis 1, Vieweg-Verlag.
- Spivak, Michael: Calculus, 4th Edition.
Viele Analysis Bücher sind auch über die Fachbibliothek der FU Berlin elektronisch verfügbar.
Bei Schwierigkeiten mit den Grundbegriffen Menge, Abbildung etc. ist die folgende Ausarbeitung empfehlenswert:
- Scheerer, Hans: Brückenkurs, Skript FU Berlin 2006.
-
19202802
Practice seminar
Tutorial: Analysis I (Pavle Blagojevic)
Schedule: Di 14:00-16:00, Mi 10:00-12:00, Mi 14:00-16:00, Do 08:00-10:00 (Class starts on: 2025-04-15)
Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202801
Lecture
-
Analysis II
0084dA1.2-
19211601
Lecture
Analysis II (Marita Thomas)
Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Content
This is the continuation of the Analysis I course taught in the previous winter term. Central topics of the course are integration in one space dimension and differential calculus of several variables.
Suggested reading
- O. Forster: Analysis 1 und 2. Vieweg/Springer.
- Königsberger, K: Analysis 1,2, Springer.
- E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
- H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.
-
19211602
Practice seminar
Practice seminar for Analysis II (Marita Thomas)
Schedule: Mi 14:00-16:00, Do 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
Location: 1.1.53 Seminarraum E2 (Arnimallee 14)
-
19211601
Lecture
-
Linear Algebra I
0084dA1.4-
19201401
Lecture
Linear Algebra I (Niels Lindner)
Schedule: Di 12:00-14:00, Fr 10:00-12:00 (Class starts on: 2025-04-15)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Content:
- Basic terms/concepts: sets, maps, equivalence relations, groups, rings,
- fields
- Linear equation systems: solvability criteria, Gauss algorithm
- Vector spaces: linear independence, generating systems and bases, dimension,
- subspaces, quotient spaces, cross products in R3
- Linear maps: image and rank, relationship to matrices, behaviour under
- change of basis
- Dual vector spaces: multilinear forms, alternating and symmetric bilinear
- forms, relationship to matices, change of basis
- Determinants: Cramer's rule, Eigenvalues and Eigenvectors
Prerequisites:Participation in the preparatory course (Brückenkurs) is highly recommended.
Suggested reading
- Siegfried Bosch, Lineare Algebra, 4. Auflage, Springer-Verlag, 2008;
- Gerd Fischer, Lernbuch Lineare Algebra und Analytische Geometrie, Springer-Verlag, 2017;
- Bartel Leendert van der Waerden, Algebra Volume I, 9th Edition, Springer 1993;
Zu den Grundlagen
- Kevin Houston, Wie man mathematisch denkt: Eine Einführung in die mathematische Arbeitstechnik für Studienanfänger, Spektrum Akademischer Verlag, 2012
-
19201402
Practice seminar
Practice seminar for Linear Algebra I (Niels Lindner)
Schedule: Di 14:00-16:00, Mi 12:00-14:00, Do 12:00-14:00 (Class starts on: 2025-04-15)
Location: 1.1.26 Seminarraum E1 (Arnimallee 14)
-
19201401
Lecture
-
Linear Algebra II
0084dA1.5-
19211701
Lecture
Linear Algebra II (Alexander Schmitt)
Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-14)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Contents:
- Determinants
- Eigenvalues and eigenvectors: diagonalizability, trigonalizability, set of Cayley-Hamilton, Jordanian normal form
- Bilinear forms
- Vectorräume with scalar product: Euclidean, unitary vectorräume, orthogonal projection, isometries, self-adjusted images, Gram-Schmidt orthonormalization methods, major axis transformation
Prerequisites:
Linear Algebra I
Literature:Will be mentioned in the lecture.
-
19211702
Practice seminar
Practice seminar for Linear Algebra II (Alexander Schmitt)
Schedule: Do 08:00-10:00, Do 10:00-12:00, Do 16:00-18:00, Fr 08:00-10:00, Fr 10:00-12:00 (Class starts on: 2025-04-17)
Location: A3/019 Seminarraum (Arnimallee 3-5)
-
19211701
Lecture
-
Geometry
0084dB2.7-
19213101
Lecture
Geometry (Giulia Codenotti)
Schedule: Di 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-15)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
Comments
Inhalt
Diese Vorlesung für das Bachelorstudium soll als natürliche Fortsetzung von Lineare Algebra I und II Fundamente legen für Vorlesungen/Zyklen wie Diskrete Geometrie, Algebraische Geometrie und Differenzialgeometrie.
Sie behandelt grundlegende Modelle der Geometrie, insbesondere
euklidische, affine, sphärische, projektive und hyperbolische Geometrie,Möbiusgeometrie, Polarität und Dualität Strukturgruppen, Messen (Längen, Winkel, Volumina), explizite Berechnungen und Anwendungen, Beispiele sowie Illustrationsthemen;
Dabei werden weitere Bezüge hergestellt, zum Beispiel zur Funktionentheorie und zur Numerik.
Suggested reading
Literatur
- Marcel Berger. Geometry I
- David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray. Geometry
- Gerd Fischer. Analytische Geometrie
- V.V. Prasolov und V.M. Tikhomirov. Geometry
-
19213102
Practice seminar
Practice seminar for Geometry (Giulia Codenotti)
Schedule: Mo 10:00-12:00, Mo 16:00-18:00 (Class starts on: 2025-04-14)
Location: A3/SR 119 (Arnimallee 3-5)
-
19213101
Lecture
-
Computer-Oriented Mathematics II
0084dA1.7-
19211901
Lecture
Computer-oriented Mathematics II (Robert Gruhlke)
Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Studierende der Mathematik (Monobachelor und Lehramt) und Bioinformatik, sowie Numerikinteressierte aus Physik, Informatik und anderen Natur- und Geisteswissenschaften.
Comments
Inhalt:
Die Auswahl der behandelten numerischen Verfahren enthält Polynominterpolation, Newton-Cotes-Formeln zur numerische Integration und Euler-Verfahren für lineare Differentialgleichungen.
-
19211902
Practice seminar
Practice seminar for Computer-oriented Mathematics II (Robert Gruhlke)
Schedule: Di 08:00-10:00, Di 16:00-18:00, Mi 16:00-18:00, Do 08:00-10:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: A3/ 024 Seminarraum (Arnimallee 3-5)
-
19211901
Lecture
-
-
Teaching methodology Mathematics - selected topics 0213bA1.1
-
Teaching methodology Mathematics - development, evaluation and research 0213bA1.2
-
Student Teaching Lab: Mathematics (Subject 2) 0214bA1.3
-
Mathematics area of specialisation 0213bA1.4
-
Probability and Statistics I 0084dA1.8
-
Algebra and Number Theroy 0084dB2.5
-
Elementary Geometry 0084dB2.6
-
Proseminar Mathematics - Teacher Training 0082eB1.3
-
Computer-Oriented Mathematics I 0084dA1.6
-