Computer Science
Bachelor's programme in Computer Science (150 cp, 2014 study regulations)
0086c_k150-
Functional Programming
0086cA1.1-
19336001
Lecture
Functional Programming (Katharina Klost)
Schedule: Di 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19336002
Practice seminar
Functional Programming Tutorials (Katharina Klost)
Schedule: Mi 16:00-18:00 (Class starts on: 2025-04-16)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19336001
Lecture
-
Algorithms, Data Structures, and Data Abstraction
0086cA1.4-
19300101
Lecture
Algorithms and Data Structures (Wolfgang Mulzer)
Schedule: Di 16:00-18:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: Gr. Hörsaal (Raum B.001) (Arnimallee 22)
Comments
Qualification goals
The students can analyze algorithms and data structures and their implementations with respect to running time, space requirements, and correctness. The students can describe different algorithms and data structures for typical applications and know how to use them in concrete settings. They can choose appropriate algorithms and data structures for a given task and are able to adapt them accordingly. Students can explain, identify and use different paradigms for designing new algorithms.
Contents
- abstract machine models
- running time, correctness and space requirements
- worst-case analysis
- algorithms and randomness
- algorithmic paradigms: divide and conquer, greedy, dynamic programming, exhaustive search
- priority queues
- ordered and unordered dictionaries (e.g., search trees, hash tables, skiplists)
- algorithms for strings (string searching and radix trees)
- graph algorithms
Suggested reading
- P. Morin: Open Data Structures, an open content textboox.
- T. H. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, MIT Press, 2022.
- R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley, 2011.
- M. Dietzfelbinger, K. Mehlhorn, P. Sanders. Algorithmen und Datenstrukturen: Die Grundwerkzeuge, Springer, 2014.
- J. Erickson. Algorithms, 2019
- T. Roughgarden. Algorithms Illuminated. Cambridge University Press, 2022.
-
19300102
Practice seminar
Practice seminar for Algorithms and Data Structures (Wolfgang Mulzer)
Schedule: Mo 14:00-16:00, Mo 16:00-18:00, Di 12:00-14:00, Mi 12:00-14:00, Mi 14:00-16:00, Mi 16:00-18:00, Do 16:00-18:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
Location: T9/051 Seminarraum (Takustr. 9)
-
19300101
Lecture
-
Computer Architecture, Operating Systems, and Communication Systems
0086cA2.1-
19300701
Lecture
Operating and Communication Systems (Larissa Groth)
Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/Gr. Hörsaal (Takustr. 9)
Comments
The module operating and communication systems closes the gap between the hardware of a computer and the applications.
We will cover the following topics::
- I/O systems
- DMA/PIO
- Interrupt handling
- Buffers
- Processes/threads
- Virtual memory
- UNIX and Windows
- Shells
- Utilities
- Peripherals and networking
- Networks
- Media
- Media access
- Protocols
- Reference models
- TCP/IP
- The Internet
Suggested reading
- Andrew S. Tanenbaum: Computerarchitektur, 5.Auflage, Pearson Studium, 2006
- English: Andrew S. Tanenbaum (with contributions from James R. Goodman):
- Structured Computer Organization, 4th Ed., Prentice Hall International, 2005.
-
19300704
PC-based Seminar
Practice seminar for Operating and Communication Systems (Larissa Groth)
Schedule: Mo 10:00-12:00, Mo 14:00-16:00, Di 10:00-12:00, Di 12:00-14:00, Mi 08:00-10:00, Mi 12:00-14:00, Mi 14:00-16:00, Do 10:00-12:00, Do 12:00-14:00, Do 16:00-18:00, Fr 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/K38 Rechnerpoolraum (Takustr. 9)
Comments
Begleitveranstaltung zur Vorlesung 19300701
-
19300701
Lecture
-
Database Systems
0086cA3.2-
19301501
Lecture
Database Systems (Agnès Voisard)
Schedule: Di 14:00-16:00, Do 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Requirements
- ALP 1 - Functional Programming
- ALP 2 - Object-oriented Programming
- ALP 3 - Data structures and data abstractions
- OR Informatik B
Comments
Content
Database design with ERM/ERDD. Theoretical foundations of relational database systems: relational algebra, functional dependencies, normal forms. Relational database development: SQL data definitions, foreign keys and other integrity constraints, SQL as applicable language: essential language elements, embedding in programming language. Application programming; object-relational mapping. Security and protection concepts. Transaction subject, transactional guaranties, synchronization of multi user operations, fault tolerance features. Application and new developments: data warehousing, data mining, OLAP.
Project: the topics are deepened in an implementation project for student groups.
Suggested reading
- Alfons Kemper, Andre Eickler: Datenbanksysteme - Eine Einführung, 5. Auflage, Oldenbourg 2004
- R. Elmasri, S. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium, 2005
-
19301502
Practice seminar
Practice seminar for Database systems (Muhammed-Ugur Karagülle)
Schedule: Mo 12:00-14:00, Mo 14:00-16:00, Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 12:00-14:00, Mi 10:00-12:00, Mi 12:00-14:00, Mi 14:00-16:00, Do 08:00-10:00, Do 10:00-12:00, Do 12:00-14:00, Do 16:00-18:00, Fr 10:00-12:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
Location: T9/SR 006 Seminarraum (Takustr. 9)
-
19301501
Lecture
-
Software Technology
0086cA3.3-
19301401
Lecture
Software Engineering (Lutz Prechelt)
Schedule: Mo 10:00-12:00, Do 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Target group
- compulsory module in BSc of Computer Science
- elective module in Computer Science Minor
- MSc school teacher students (Großer Master mit Zweitfach Informatik) may chose this module together with "Praktikum SWT (19516c)", thereby replacing modules "Net programming" and "Embedded Internet"
Requirements
ALP III or Informatik B
Language
The course language is German, including all slides and practice sheets. A minority of slides is in English.
The exam is formulated in German, but answers may be given in English, too.
Homepage
http://www.inf.fu-berlin.de/w/SE/VorlesungSoftwaretechnik
Comments
Content
Software Engineering is the science of software construction on a grand scale, that is the basic course of systems engineering.
Software Engineering aims at giving answers to the following questions:
- How to find out which characterstics a software should have (requirements engineering)
- How to describe these characteristics (specifcation)
- How to structure software so that it may be built easily and changed flexibly (design)
- How to change software which does not have such a structure or whose structure you do not understand (anymore) (reengineering)
- How to disguise defects in software (quality assurance, test)
- How to organise the tasks in a software company or department to regularly achieve cost-efficient and high-quality results (process management)
- Which (largely common) problems underlie all of these questions and which (mostly common) general approaches underlie the methods and techniques that are used
...and many similar ones.
This lecture gives an overview of the methods and provides essential basic knowledge for any computer scientist working as an engineer.
More detailed information may be found on the homepage http://www.inf.fu-berlin.de/w/SE/VorlesungSoftwaretechnik
Suggested reading
Bernd Brügge, Allen Dutoit: Objektorientierte Softwaretechnik mit UML, Entwurfsmustern und Java, Pearson 2004.
-
19301402
Practice seminar
Practice seminar for Software Engineering (Lutz Prechelt)
Schedule: Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 16:00-18:00, Mi 08:00-10:00, Mi 10:00-12:00, Mi 14:00-16:00, Do 10:00-12:00, Do 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-14)
Location: T9/046 Seminarraum (Takustr. 9)
-
19301401
Lecture
-
Linear Algebra for Computer Scientists
0086cA5.2-
19301001
Lecture
Linear Algebra for Computer Science and Bioinformatics (Max Willert)
Schedule: Mi 16:00-18:00, Do 10:00-12:00, Fr 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
Location: Hs 1b Hörsaal (Habelschwerdter Allee 45)
Additional information / Pre-requisites
The sign-up for the tutorial sessions will be announced in due time.
Comments
- linear algebra:
- vector space, basis and dimension;
- linear map, matrix and rank;
- Gauss-elimination and linear systems of equations;
- determinants, eigenvalues and eigenvectors;
- euclidean vector spaces and orthonormalization;
- principal component transformation;
- Applications of linear algebra in affine geometry, statistics, and coding theory (linear codes)
Suggested reading
- Klaus Jänich: Lineare Algebra, Springer-Lehrbuch, 10. Auflage 2004
- Dirk Hachenberger: Mathematik für Informatiker, Pearson 2005
- G. Grimmett, D. Welsh: Probability - An Introduction, Oxford Science Publications 1986
- Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer-Verlag, 6. Auflage 2001
- G. Berendt: Mathematik für Informatiker, Spektrum Akademischer Verlag 1994
- Oliver Pretzel: Error-Correcting Codes and Finite Fields, Oxford Univ. Press 1996
- linear algebra:
-
19301002
Practice seminar
Practice seminar for Linear Algebra for Computer Science (Max Willert)
Schedule: Mo 10:00-12:00, Mo 14:00-16:00, Mo 16:00-18:00, Di 08:00-10:00, Di 10:00-12:00, Di 12:00-14:00, Di 14:00-16:00, Di 16:00-18:00 (Class starts on: 2025-04-14)
Location: T9/049 Seminarraum (Takustr. 9)
-
19301001
Lecture
-
Academic Work in Computer Science
0086cA6.1-
19319701
Lecture
Scientific Work/Research in Computer Science (Claudia Müller-Birn)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Further information:
https://www.mi.fu-berlin.de/w/SE/VorlesungWissenschaftlichesArbeiten2019
Comments
The lecture introduces students to scientific work. The essential forms of written and oral knowledge representation are described. It explains how to write computer science texts and how to read and examine them. Furthermore, students will be introduced to legal, ethical and philosophical problems of the sciences and in particular of computer science. Furthermore, problems of gender and diversity in computer science and in lectures will be presented and solution strategies will be discussed.
-
19301710
Proseminar
Undergraduate Seminar: Theoretical Computer Science (Katharina Klost)
Schedule: Di 16:00-18:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Comments
Contents
The proseminar delves more deeply into topics covered in the basic classes taught by the theory group. During the winter semester, we consider advanced topics from the theory of computability and of formal languates (in continuation of "Theory of Computation"); during the summer semester, we talk about algorithms (in continuation of "Algorithms, Data Structures, and Data Abstraction").
Prerequisites
two semesters of computer science, successful completion of "Theory of Computation"
Suggested reading
wird mit der Ankündigung bekannt gegeben
-
19307117
Seminar / Undergraduate Course
Seminar/Proseminar: Smart Homes and the World of IoT (Marius Max Wawerek)
Schedule: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Comments
This seminar focuses on various aspects of modern “Internet of Things” (IoT) systems. The main component will be applications and publications related to the area of the “Smart Home”. At the beginning of the seminar, suggested topics will be given, which will mainly deal with data analysis (both “normal” statistics and machine learning), security aspects and the usefulness of the Internet of Things or the “Smart Home”. You are also welcome to suggest your own topics, but they must be related to IoT systems. The topics should be worked on alone.
About the procedure: This seminar takes place throughout the semester. There are few meetings, but these are mandatory. On the first date (14.04.2025) the list of topics will be handed out and discussed. In the next week (21.04.2025) there will be another opportunity to discuss topic suggestions. If you are interested in your own topic, please prepare a short (2-3 minutes) outline of your proposal. As in the third week (28.04.2025) the topics will be assigned.
There will then be 3 presentation dates per person: the presentation of the literature research (19.05.2025), a short interim presentation (16.06.2025) and the final presentation on one of the dates in the period from 30.06.2025 - 14.07.2025. There will be no further meetings beyond this.This means that, depending on the number of participants, the following meetings are mandatory:
- 14.04.2025
- 21.04.2025
- 19.05.2025
- 16.06.2025
- 30.06.2025
- 07.07.2025
- 14.07.2025
-
19313310
Proseminar
Undergraduate Seminar: Interactive Intelligent Systems - A Human-Centered Perspective (Malte Heiser)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: keine Angabe
Additional information / Pre-requisites
Link to this course on the HCC website
Comments
In this Proseminar, we discuss research results from the field of Human Computer Interaction with a focus on computer science. In recent decades, this area has changed extensively, mainly through technological innovations. We primarily consider these changed interactions between one or more people and one or more computers.
This time we will focus specifically on interactions with large language models (LLMs). We will explore new ways that these tools allow us to interact with technology. We will also consider the implications of generative AI for users and society at large.
In this course, we will cover a selection of important paper on pioneering work in HCI. Each semester, the focus of the more recent work might change. Each week, one student will present one important approach, and we will discuss it in class. Within presentations students have to introduce the assigned readings, will discuss them in context and will derive new, possible topics. Articles are chosen because they describe either a specific sub--area, represent the first article in a specific area, or introduce different approaches in the area.
Suggested reading
Wird bei der Vorbesprechung im April bekanntgegeben.
-
19331617
Seminar / Undergraduate Course
Seminar/Proseminar: Information-theoretical principles of ML (Gerhard Wunder)
Schedule: Fr 14:00-16:00 (Class starts on: 2025-04-25)
Location: T9/K40 Multimediaraum (Takustr. 9)
Comments
Recently, artificial intelligence and machine learning (AI/ML) has emerged as a valuable tool in the field of communication and signal processing. It is therefore natural to extend the investigations to the field of physical layer security and privacy. This field is still in its infancy with some very preliminary results on wiretap channel code design, feature extraction of wireless channels and a growing part of contributions to privacy-preserving, distributed AI/ML. This seminar will teach the latest advances and synergies between the broad fields of AI/ML and secure communications.
Keywords: ML overview, basic tools, universal approximation, deep learning, stochastic gradient, acceleration strategies, deep convolutional networks, feature extraction, classification, mutual information neural network estimation, structured sparsity in convolutional neural networks, matrix decompositions
-
19334617
Seminar / Undergraduate Course
Seminar/Proseminar: How to Startup (Tim Landgraf)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/046 Seminarraum (Takustr. 9)
Comments
This seminar explores the multifaceted world of startups, providing students with a comprehensive understanding of what it takes to succeed in a dynamic and competitive environment. Topics covered include team composition, market analysis, investment logic, emerging trends (such as AI), and common pitfalls faced by startups.
Unlike traditional seminars, this course emphasizes practical engagement. Students will work on preparing concise "Impulsvorträge" (short, 15-minute talks) on specific startup-related topics. These presentations will draw from a variety of sources, including:
* Web Research: Gathering insights from industry reports, blogs, and articles.
* Interviews: Engaging with actual startups to gain firsthand knowledge and perspectives.
* Trend Analysis: Examining current innovations and disruptions in the startup ecosystem.
Each talk will serve as the starting point for an interactive discussion, stimulating deeper understanding and diverse viewpoints among participants.
This seminar is ideal for students who are curious about entrepreneurship and eager to explore how startups operate, grow, and navigate challenges in today's fast-paced world. -
19336717
Seminar / Undergraduate Course
Active learning, uncertainty and XAI with applications in biomedicine (Katharina Baum)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: T9/051 Seminarraum (Takustr. 9)
Comments
In this advanced seminar, we will discuss a variety of methods for machine learning. The focus will be on approaches to active learning, uncertainty estimation and its utilization, as well as methods for explaining models. The application and development of these methods for biomedical research questions will be explored using current research papers.
Examples of approaches covered include:
- selective sampling
- SHAP values
- Gaussian ensemble models
- Bayesian neural networks
The seminar will primarily be conducted in English, but of course, you are welcome to ask questions in German.
-
19319701
Lecture
-
Academic Work in Applied Computer Science
0086cB1.4-
19303811
Seminar
Project Seminar: Data Management (Muhammed-Ugur Karagülle)
Schedule: Do 12:00-14:00 (Class starts on: 2025-04-17)
Location: T9/137 Konferenzraum (Takustr. 9)
Additional information / Pre-requisites
Requirement
ALP I-III, Foundations of Datenbase Systems, good programming knowledge.
Comments
Content
A project seminar serves as preparation of a thesis (bachelor or master) in the AGDB. The focus of this project seminar lies on the analysis and visualization of medical data. Additionally, we will realize a small software project.
Suggested reading
Wird bekannt gegeben.
-
19305811
Seminar
Seminar: Contributions to Software Engineering (Lutz Prechelt)
Schedule: Do 16:00-18:00 (Class starts on: 2025-04-17)
Location: T9/049 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
Target group
Students of Computer Science (also Minor).
In case you are interested, please contact an adecuate group member with a topic suggestion or request.
As this lecture is offered continuously, attendance may also start any time during the semester.
Requirements
Any computer science student having attended the lecture Software Engineering (Softwaretechnik).
It may become necessary to deal with materials from the lecture Empirical Evaluation in Informatics (Empirische Bewertung in der Informatik).
Homepage
http://www.inf.fu-berlin.de/w/SE/SeminarBeitraegeZumSE
Comments
Content
This is a reseach seminar: normally the presentations are supposed to advance current research projects. Thus, there are, generally speaking, three possible types of topics:
- published or current research projects from one of the areas in which our software engineering group works
- especially good specific research projects (or other knowledge) from other areas of software engineering or adjacent areas of computer science
- basis topics from important areas of software engineering or adjacent disciplines such as psychology, sociology, pedagogics, economics as well as their methods.
There is no exact restriction of topics though; almost anything is possible.
Suggested reading
Je nach Wahl des Vortragsthemas
-
19307117
Seminar / Undergraduate Course
Seminar/Proseminar: Smart Homes and the World of IoT (Marius Max Wawerek)
Schedule: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Comments
This seminar focuses on various aspects of modern “Internet of Things” (IoT) systems. The main component will be applications and publications related to the area of the “Smart Home”. At the beginning of the seminar, suggested topics will be given, which will mainly deal with data analysis (both “normal” statistics and machine learning), security aspects and the usefulness of the Internet of Things or the “Smart Home”. You are also welcome to suggest your own topics, but they must be related to IoT systems. The topics should be worked on alone.
About the procedure: This seminar takes place throughout the semester. There are few meetings, but these are mandatory. On the first date (14.04.2025) the list of topics will be handed out and discussed. In the next week (21.04.2025) there will be another opportunity to discuss topic suggestions. If you are interested in your own topic, please prepare a short (2-3 minutes) outline of your proposal. As in the third week (28.04.2025) the topics will be assigned.
There will then be 3 presentation dates per person: the presentation of the literature research (19.05.2025), a short interim presentation (16.06.2025) and the final presentation on one of the dates in the period from 30.06.2025 - 14.07.2025. There will be no further meetings beyond this.This means that, depending on the number of participants, the following meetings are mandatory:
- 14.04.2025
- 21.04.2025
- 19.05.2025
- 16.06.2025
- 30.06.2025
- 07.07.2025
- 14.07.2025
-
19328217
Seminar / Undergraduate Course
Seminar/Proseminar: New Trends in Information Systems (Agnès Voisard)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: A3/SR 119 (Arnimallee 3-5)
Comments
This seminar aims at studying recent trends in data management. Among others, we will look at two emerging topics, namely Location-Based Services (LBS) and Event-Based Services (EBS).
Event-based Systems (EBS) are part of many current applications such as business activity monitoring, stock tickers, facility management, data streaming, or security. In the past years, the topic has gained increasing attention from both the industrial and the academic community. Current research concentrates of diverse aspects that range from event capture (incoming data) to response triggering. This seminar aims at studying some of the current trends in Event-based Systems with a strong focus on models and design. Location-based services are now often part of every day's life through applications such as navigation assistants in the public or private transportation domain. The underlying technology deals with many different aspects, such as location detection, information retrieval, or privacy. More recently, aspects such as user context and preferences were considered in order to send users more personalized information.
A solid background in databases is required, typically a database course at a bachelor level.
Suggested reading
Wird bekannt gegeben.
-
19333311
Seminar
Seminar: Continual Learning (Manuel Heurich)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Comments
This seminar focuses on recent advances in ‘Continual Learning’, an increasingly important field within machine learning. Continual Learning tackles the problem of drifting data in input space and changes between input and target distribution. Static models drop significantly in performance when data distributions are subject to change over time. We will cover recent approaches that tackle this problem from different angles. This seminar explores the training of adaptive models that can perform strongly in highly volatile domains.
-
19334617
Seminar / Undergraduate Course
Seminar/Proseminar: How to Startup (Tim Landgraf)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/046 Seminarraum (Takustr. 9)
Comments
This seminar explores the multifaceted world of startups, providing students with a comprehensive understanding of what it takes to succeed in a dynamic and competitive environment. Topics covered include team composition, market analysis, investment logic, emerging trends (such as AI), and common pitfalls faced by startups.
Unlike traditional seminars, this course emphasizes practical engagement. Students will work on preparing concise "Impulsvorträge" (short, 15-minute talks) on specific startup-related topics. These presentations will draw from a variety of sources, including:
* Web Research: Gathering insights from industry reports, blogs, and articles.
* Interviews: Engaging with actual startups to gain firsthand knowledge and perspectives.
* Trend Analysis: Examining current innovations and disruptions in the startup ecosystem.
Each talk will serve as the starting point for an interactive discussion, stimulating deeper understanding and diverse viewpoints among participants.
This seminar is ideal for students who are curious about entrepreneurship and eager to explore how startups operate, grow, and navigate challenges in today's fast-paced world. -
19335011
Seminar
Seminar: Networks, dynamic models and ML for data integration in the life sciences (Katharina Baum)
Schedule: Di 12:00-14:00 (Class starts on: 2025-04-15)
Location: T9/137 Konferenzraum (Takustr. 9)
Comments
Research seminar of the group Data Integration in the Life Sciences (DILiS). Also open for seminar participation in the Master's program, online participation possible. Please refer to the current schedule on the whiteboard!
The seminar offers space for the discussion of advanced and integrative data analysis techniques, in particular presentations and discussion of ongoing or planned research projects, news from conferences, review and discussion of current literature and discussion of possible future teaching formats and content, and presentations, as well as final presentations on theses or project seminars. The seminar language is mostly English. Interested students are welcome to attend and drop in without obligation or present a topic of their own choice of interest to the working group as in a usual seminar. Please note: Individual dates may be canceled or postponed. Please contact me in case of questions (katharina.baum@fu-berlin.de)!
-
19336717
Seminar / Undergraduate Course
Active learning, uncertainty and XAI with applications in biomedicine (Katharina Baum)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: T9/051 Seminarraum (Takustr. 9)
Comments
In this advanced seminar, we will discuss a variety of methods for machine learning. The focus will be on approaches to active learning, uncertainty estimation and its utilization, as well as methods for explaining models. The application and development of these methods for biomedical research questions will be explored using current research papers.
Examples of approaches covered include:
- selective sampling
- SHAP values
- Gaussian ensemble models
- Bayesian neural networks
The seminar will primarily be conducted in English, but of course, you are welcome to ask questions in German.
-
19337517
Seminar / Undergraduate Course
Seminar/Proseminar: Time Series Learning (Manuel Heurich)
Schedule: Mo 10:00-12:00 (Class starts on: 2025-04-14)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Comments
This seminar focuses on Machine Learning approaches that specialize in sequential data. Most real-world data is acquired over time. Moreover, most of the available data is not image data. We will discuss works before the Transformer era (e.g., RNNs, LSTMs) and highlight their strengths and weaknesses outside the Computer Vision domain. More recently, transformer-based approaches have outperformed earlier methods. We selectively pick works that highlight their strength in knowledge discovery on sequential data. With the strong trend towards powerful multi-modal models, the seminar aims to introduce state-of-the-art methods to produce robust embeddings based on Time Series data.
-
19303811
Seminar
-
Academic Work in Theoretical Computer Science
0086cB1.5-
19306711
Seminar
Seminar on Algorithms (László Kozma)
Schedule: Do 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
Location: T9/049 Seminarraum (Takustr. 9)
Comments
Contents
Advanced topics in algorithm design with a changing focus. The topic is determined in each semester.
This semester we plan a reading-group-style seminar on recent breakthrough results (2020-2025) in shortest paths algorithms.
Target audience
Masters students in computer science and mathematics.
Recommended prerequisites
"Advanced algorithms" or a similar class.
Suggested reading
Spezialliteratur aus Zeitschriften
-
19331617
Seminar / Undergraduate Course
Seminar/Proseminar: Information-theoretical principles of ML (Gerhard Wunder)
Schedule: Fr 14:00-16:00 (Class starts on: 2025-04-25)
Location: T9/K40 Multimediaraum (Takustr. 9)
Comments
Recently, artificial intelligence and machine learning (AI/ML) has emerged as a valuable tool in the field of communication and signal processing. It is therefore natural to extend the investigations to the field of physical layer security and privacy. This field is still in its infancy with some very preliminary results on wiretap channel code design, feature extraction of wireless channels and a growing part of contributions to privacy-preserving, distributed AI/ML. This seminar will teach the latest advances and synergies between the broad fields of AI/ML and secure communications.
Keywords: ML overview, basic tools, universal approximation, deep learning, stochastic gradient, acceleration strategies, deep convolutional networks, feature extraction, classification, mutual information neural network estimation, structured sparsity in convolutional neural networks, matrix decompositions
-
19335011
Seminar
Seminar: Networks, dynamic models and ML for data integration in the life sciences (Katharina Baum)
Schedule: Di 12:00-14:00 (Class starts on: 2025-04-15)
Location: T9/137 Konferenzraum (Takustr. 9)
Comments
Research seminar of the group Data Integration in the Life Sciences (DILiS). Also open for seminar participation in the Master's program, online participation possible. Please refer to the current schedule on the whiteboard!
The seminar offers space for the discussion of advanced and integrative data analysis techniques, in particular presentations and discussion of ongoing or planned research projects, news from conferences, review and discussion of current literature and discussion of possible future teaching formats and content, and presentations, as well as final presentations on theses or project seminars. The seminar language is mostly English. Interested students are welcome to attend and drop in without obligation or present a topic of their own choice of interest to the working group as in a usual seminar. Please note: Individual dates may be canceled or postponed. Please contact me in case of questions (katharina.baum@fu-berlin.de)!
-
19306711
Seminar
-
Academic Work in Computer Systems
0086cB1.6-
19307117
Seminar / Undergraduate Course
Seminar/Proseminar: Smart Homes and the World of IoT (Marius Max Wawerek)
Schedule: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Comments
This seminar focuses on various aspects of modern “Internet of Things” (IoT) systems. The main component will be applications and publications related to the area of the “Smart Home”. At the beginning of the seminar, suggested topics will be given, which will mainly deal with data analysis (both “normal” statistics and machine learning), security aspects and the usefulness of the Internet of Things or the “Smart Home”. You are also welcome to suggest your own topics, but they must be related to IoT systems. The topics should be worked on alone.
About the procedure: This seminar takes place throughout the semester. There are few meetings, but these are mandatory. On the first date (14.04.2025) the list of topics will be handed out and discussed. In the next week (21.04.2025) there will be another opportunity to discuss topic suggestions. If you are interested in your own topic, please prepare a short (2-3 minutes) outline of your proposal. As in the third week (28.04.2025) the topics will be assigned.
There will then be 3 presentation dates per person: the presentation of the literature research (19.05.2025), a short interim presentation (16.06.2025) and the final presentation on one of the dates in the period from 30.06.2025 - 14.07.2025. There will be no further meetings beyond this.This means that, depending on the number of participants, the following meetings are mandatory:
- 14.04.2025
- 21.04.2025
- 19.05.2025
- 16.06.2025
- 30.06.2025
- 07.07.2025
- 14.07.2025
-
19310817
Seminar / Undergraduate Course
Seminar/Proseminar: High Performance and Cloud Computing (Barry Linnert)
Schedule: Di 12:00-14:00 (Class starts on: 2025-04-22)
Location: T9/K40 Multimediaraum (Takustr. 9)
Comments
When it comes to processing complex applications or large amounts of data within a reasonable time frame, the use of parallel programs is unavoidable. However, these can be very different due to the specific application framework or the technical environments. For example, high-performance computing (HPC) uses supercomputers that support applications with a high degree of interaction, while cloud computing focuses on the provision of data and computing capacity on demand.
Both application areas have challenges both at the programming level and in the administration of the corresponding systems.
In the seminar, we will focus on one aspect of this spectrum and summarize and evaluate current research in this area.Further information on the procedure will be provided at the first meeting on 22.04.2025.
-
19329617
Seminar / Undergraduate Course
Seminar/Proseminar: Telematics (Jochen Schiller)
Schedule: Di 15.07. 10:00-16:00, Di 22.07. 10:00-18:00 (Class starts on: 2025-07-15)
Location: T9/K40 Multimediaraum (Takustr. 9)
Comments
This seminar focuses on several aspects of technical Computer Science. At the start of the seminar you will receive a list of suggested topics that mainly deal with particular aspects of the so-called Trusted Computing and security issues in the Internet of Things. You are also very welcome to suggest your own research topic that is closely related to technical Computer Science. You can work on your topic exclusively or in a small group of 2-3 students. But then, it has to be apparent who contributed what part to the seminar paper.
It is possible to combine this seminar with the software project Telematics. Then, the theoretical foundations of the topic are dealt with in the scientific seminar paper and implemented in practice in the software project. Please note that the seminar paper is not supposed to deal with details of the implementation and that you are still obliged to write an accurate documentation of the software project in written form.
Concerning the schedule: This seminar takes place during the semester. There are only a few meetings, but these are mandatory. On the first meeting (03.11.2020), the topic list will be handed out and discussed. Please prepare a short (2-3 minutes) overview of your own topic suggestion if you would like to include it in the seminar. On the next week (10.11.2020), the topics will be assigned. After that there will be 3 presentation dates in total: the topic presentation (01.12.2021), a short interim presentation (12.01.2021) and the final presentation (23.02.2021). There will be no further meetings beyond that. This semester, all meetings will take place as video conferences with Webex.
-
19307117
Seminar / Undergraduate Course
-
Software Project: Applied Computer Science A
0089cA1.23-
19308412
Project Seminar
Software Project: Data Management (Agnès Voisard)
Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-02-05)
Location: T9/137 Konferenzraum (Takustr. 9)
Additional information / Pre-requisites
Target group
Students in the Master's or Bachelor's programme
Prerequisites
Good programming skills, introduction to database systems.
Comments
Subject of the project: either development of software together with a company (in this case: 4 weeks fulltime August/September) or we build a so called NoSQL system. Decision in March. Further information are published in the KVV.
Suggested reading
Wird bekannt gegeben. / To be announced.
-
19314012
Project Seminar
Software Project: Semantic Technologies (Adrian Paschke)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: A7/SR 031 (Arnimallee 7)
Additional information / Pre-requisites
Further information can be found on the course website
Comments
Mixed groups of master and bachelor students will either implement an independent project or are part of a larger project in the area of semantic technologies. They will gain in-depth programming knowledge about applications of semantic technologies and artificial intelligence techniques in the Corporate Semantic Web. They will practice teamwork and best practices in software development of large distributed systems and Semantic Web applications. The software project can be done in collaboration with an external partner from industry or standardization. It is possible to continue the project as bachelor or master thesis.
Suggested reading
-
19323612
Project Seminar
The AMOS Project (Lutz Prechelt)
Schedule: -
Location: keine Angabe
Additional information / Pre-requisites
Educational objectives and competencies
- Students learn about software products and software development in an industry context
- Students learn about agile methods, in particular Scrum and Extreme Programming
- Students learn about open source software development and its underlying principles
- Students gain practical hands-on experience with a Scrum process and XP technical practices
Target group
Students of computer science (and related fields). If you want to play the software developer role, you should have had practical programming experience. This is not a course to learn programming.
Language
English (lectures in English, team meeting German or English by choice of student team)
Grading
- Software developer
- 10% of grade: 5 class quizzes, each consisting of 5 questions at 2 points each
- 90% of grade: Weekly project work
Other
- SWS: 4 SWS (2 SWS lecture, 2 SWS team meeting)
- Semester: Every semester
- Modality: Online, across multiple universities
- Tags: Scrum
Comments
This course teaches agile methods (Scrum and XP) and open source tools using a single semester-long project. It takes place online and across multiple universities. Topics covered are:
- Agile methods and related software development processes
- Scrum roles, process practices, including product and engineering management
- Technical practices like refactoring, continuous integration, and test-driven development
- Principles and best practices of open source software development
The project is a software development project in which each student team works with an industry partner who provides the idea for the project. This is a practical hands-on experience.
Students play the role of a software developer. In this role, students estimate the effort for requirements and implement them. Students must have prior software development experience.
Students will be organized into teams of 7-9 people, combining one Scrum master with two product owners with six software developers.
An industry partner will provide requirements to be worked out in detail by the product owners and to be realized by the software developers. The available projects will be presented in the run-up to the course.
Class consists of a 90 min. lecture followed by a 90 min. team meeting. Rooms and times for team meetings are assigned at the beginning of the semester. You must be able to regularly participate in the team meetings. If you can't, do not sign up for this course.
Attention: this course is organized externally and additional sign-up steps are required. Sign-up and further course information are available through a Google spreadsheet at https://amos.uni1.de – please declare your interest by filling out the course interest declaration survey as soon as it opens.
Suggested reading
-
19329912
Project Seminar
Software Project: Secure Identity (Volker Roth)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: A7/SR 031 (Arnimallee 7)
Comments
Die Aufgabe wird die Entwicklung einer Software sein. Es wird um sichere Softwareentwicklung gehen. Die Aufgabe wird in Gruppenarbeit gelöst.
-
19334212
Project Seminar
Softwareproject: Machine Learning and Explainability for Improved (Cancer) Treatment (Pauline Hiort)
Schedule: Di 15:00-17:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-02-26)
Location: T9/K40 Multimediaraum (Takustr. 9)
Comments
In the software project, we will implement, train, and evaluate various machine learning (ML) methods. The focus of the project is on neural networks (NN) and their explainability. We will compare the methods with different baseline models, such as regression models. The various ML methods will be applied to a specific dataset, e.g., for predicting drug combinations for cancer treatment, and evaluated accordingly. The dataset will be prepared by us and analyzed using the implemented methods. Additionally, we will focus on explainability to ensure that the predictions of the ML models are understandable and interpretable. For this purpose, we will integrate appropriate explainability techniques to better understand and visualize the decision-making processes of the models.
The programming language is Python, and we plan to use modern Python modules for ML like scikit-learn, and PyTorch. Good Python skills are required. The goal is to create a Python package that provides reusable code for preprocessing, training ML models, and evaluating results with documentation (e.g., using Sphinx) for the specific use case. The software project takes place throughout the semester and can also be conducted in English.
-
19334412
Project Seminar
SWP: Szenario-Management in the Future Security Lab (Larissa Groth)
Schedule: Mi 23.04. 14:00-16:00 (Class starts on: 2025-04-23)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Comments
The BeLIFE project, part of the working group Telematics & Computer Systems, focuses on improving knowledge transfer and communication in civil security research. A central component of the project is the Future Security Lab, located at the Einstein Center Digital Future (ECDF) in Mitte. The lab welcomes politicians from federal and state levels, as well as representatives from authorities and organizations with security responsibilities.
Within the software project, students develop concepts to optimize and creatively enhance the existing technical infrastructure of the space. The goal is to increase the usability of the space for scientists and improve the user experience for visitors. To achieve this, the software project consists of several sub-areas, either arising from a specific problem to be solved or requiring creative approaches and ingenuity. Tasks include system administration, interface development, as well as light/sound installation and orchestration. Examples of challenges include the parallel startup of all computers in a network via WakeOn LAN from a web app or optimizing the existing web app for scenario presentation.
The tasks are exclusively addressed in small groups (3-5 students). Collaboration and code availability are facilitated through the department's own GitLab or a public GitHub. Results should be well-documented, for example, through README files in Git and a well-structured wiki. Modularity and expandability of the developed code, along with thorough documentation, are crucial for the success of this software project!
Regarding the process, this software project takes place throughout the semester. There are a few mandatory large group meetings with all participants. In addition, there are short weekly meetings where at least one group member reports on the current status. The first date (23.04.25, 14h, K63) will take place at Takustraße 9. At this event, the solutions already implemented will be presented in theory and the problems addressed. A live demo will then take place one week later, on 30.04.2025, in Berlin Mitte at the Future Security Lab, Wilhelmstr. 67, 10117 Berlin. Afterwards, there are a total of three presentation dates: the presentation of an initial approach to problem-solving (14.04.2025), a brief interim presentation (11.06.2025), and the final presentation (16.07.2025).
Students also regularly have the opportunity to work in the Future Security Lab premises, familiarize themselves with the equipment, and conduct tests.
-
19308412
Project Seminar
-
Current research topics in Applied Computer Science
0089cA1.27-
19302801
Lecture
Applied Biometrics (Andreas Wolf)
Schedule: Mo 08:00-10:00 (Class starts on: 2025-04-14)
Location: T9/K40 Multimediaraum (Takustr. 9)
Additional information / Pre-requisites
Die Lehrveranstaltung soll am Freitag den 12. April beginnen.
Das Vorlesungsskript liegt unter
https://drive.google.com/drive/folders/0B7NhYbv9QewkRkk2WVRuM2Rqd00?usp=sharing
Webex Link zu der Veranstaltung:
Meeting-Link: https://fu-berlin.webex.com/fu-berlin/j.php?MTID=m2cc50d96918fcaeb09f3c36a264f4f29
Meeting-ID: 121 079 7504
Meeting-Password: mCwDw274PS8
Comments
The lecture held by Dr. Andreas Wolf (from the Bundesdruckerei) He will give a broad overview of biometric processes and applications. He will also address the current issues with ePassports and new electronic identity cards.
The course aims to include:
- General structure of biometric systems
- Features of biometric modalities
- IT security and risk assessment
- Errors in biometric processes
- Fingerprinting
- Facial and iris recognition
- Speaker recognition and other modalities
- Standards
- ePassport
Next to the theoretical foundations of biometric modalities, the students are to develop the ability to assess the applicability of biometrics in various scenarios.
-
19325301
Lecture
Cluster Computing (Barry Linnert)
Schedule: Di 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
Target group
- Computer Science Master students
Requirements
- Experience with computers and software as well as programing skills.
Language
- The course language is German (or English if requested).
- The exam will be formulated in German, but answers may be given in English, too.
Credits & Exams
The criteria for gaining credits are
- active participation in the tutorials: regular preparation of assignements & presentation of results in the tutorials
- passing of the exam
Website
https://www.mi.fu-berlin.de/w/SE/VorlesungClusterComputing
Comments
Cluster computer are the prevailing type of high performance computers. They are built of custom off-the-shelf processor boards that are connected by a high speed interconnection network. Although usually locally integrated, they are conceptually distributed systems with local operating system images. Their enormous potential, however, can only be exploited, if program code and data are optimally distributed across the nodes. Cluster management mechanisms also need to be scalable to be employed in systems with thousands of nodes. The lecture course gives an overview of the architecture of cluster computers and the related management problems for which algorithmic solutions are presented.
Suggested reading
- Heiss, H.-U.: Prozessorzuteilung in Parallelrechnern, BI-Verlag, Mannheim, 1996
- Andrews, G. A.: Foundations of Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000
- Pfister, G.: In Search of Clusters 2nd ed., Prentice Hall, 1998
- Zomaya, A.: Parallel and distributed computing handbook, McGraw Gill, 1995
- Buyya, R.: High Performance Cluster Computing, Vol. 1+2, Prentice Hall, 1999
-
19327401
Lecture
Image- and video coding (Heiko Schwarz)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
Comments
This course introduces the most important concepts and algorithms that are used in modern image and video coding approaches. We will particularly focus on techniques that are found in current international video coding standards.
In a short first part, we introduce the so-called raw data formats, which are used as input and output formats of image and video codecs. This part covers the following topics:
- Colour spaces and their relation to human visual perception
- Transfer functions (gamma encoding)
- Why do we use the YCbCr format?
The second part of the course deals with still image coding and includes the following topics:
- The start: How does JPEG work?
- Why do we use the Discrete Cosine Transform?
- Efficient coding of transform coefficients
- Prediction of image blocks
- Adaptive block partitioning
- How do we take decisions in an encoder?
- Optimized quantization
In the third part, we discuss approaches that make video coding much more efficient than coding all pictures using still image coding techniques:
- Motion-compensated prediction
- Coding of motion vectors
- Algorithms for motion estimation
- Sub-sample accurate motion vectors and interpolation filters
- Usage of multiple reference pictures
- What are B pictures and why do we use them?
- Deblocking and deringing filters
- Efficient temporal coding structures
In the exercises, we will implement our own image codec (in a gradual manner). We may extend it to a simple video codec.
Suggested reading
- Bull, D. R., “Communicating Pictures: A Course in Image and Video Coding,” Elsevier, 2014.
- Ohm, J.-R., “Multimedia Signal Coding and Transmission,” Springer, 2015.
- Wien, M., “High Efficiency Video Coding — Coding Tools and Specifications,” Springer 2014.
- Sze, V., Budagavi, M., and Sullivan, G. J. (eds.), “High Efficiency Video Coding (HEVC): Algorithm and Architectures,” Springer, 2014.
- Wiegand, T. and Schwarz, H., "Source Coding: Part I of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 4, no. 1–2, 2011.
- Schwarz, H. and Wiegand, T., “Video Coding: Part II of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 10, no. 1–3, 2016.
-
19331101
Lecture
Human Centered Data Science (Claudia Müller-Birn)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: T9/SR 006 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
[link HCC-Webseite aktuelles Semester]
Comments
In recent years, data science has developed rapidly, primarily due to the progress in machine learning. This development has opened up new opportunities in a variety of social, scientific, and technological areas. From the experience of recent years, however, it is becoming increasingly clear that the concentration on purely statistical and numerical aspects in data science fails to capture social nuances or take ethical criteria into account. The research area Human-Centered Data Science closes this gap at the intersection of Human-Computer Interaction (HCI), Computer-Supported Cooperative Work (CSCW), Human Computation, and the statistical and numerical techniques of Data Science.
Human-Centered Data Science (HCDS) focuses on fundamental principles of data science and its human implications, including research ethics; data privacy; legal frameworks; algorithmic bias, transparency, fairness, and accountability; data provenance, curation, preservation, and reproducibility; user experience design and research for big data; human computation; effective oral, written, and visual scientific communication; and societal impacts of data science.
At the end of this course, students will understand the main concepts, theories, practices, and different perspectives on which data can be collected and manipulated. Furthermore, students will be able to realize the impact of current technological developments may have on society.
This course curriculum was initially developed by Jonathan T. Morgan, Cecilia Aragon, Os Keyes, and Brock Craft. We have adapted the curriculum for the European context and our specific understanding of the field.
Suggested reading
Kogan, M., Halfaker, A., Guha, S., Aragon, C., Muller, M., & Geiger, S. (2020, January). Mapping Out Human-Centered Data Science: Methods, Approaches, and Best Practices. In Companion of the 2020 ACM International Conference on Supporting Group Work (pp. 151-156).
-
19333101
Lecture
Cybersecurity and AI II: Explainability (Gerhard Wunder)
Schedule: Mo 12:00-14:00, Di 10:00-12:00, Fr 12:00-14:00 (Class starts on: 2025-04-15)
Location: 1.3.21 Seminarraum T1 (Arnimallee 14)
-
19333701
Lecture
Ethics and Epistemology of AI (Christoph Benzmüller)
Schedule: -
Location: keine Angabe
Comments
The course Ethics and Epistemology of AI will be offered again in summer 2025 in cooperation with the TU Berlin (Prof. Sabine Ammon) and U Bamberg. It will bring together an interdisciplinary mix of students from different institutions, including BUA Berlin and Erasmus students.
Innovative. Experimental. Interdisciplinary.
More Information: https://www.tu.berlin/en/philtech/study-and-teaching/courses/ethics-and-epistemology-of-ai
Information for interested students:
- The course primarily targets masters students with interest in assessing critical aspects of latest artificial intelligence technology and to explore possible solutions and improvements; the course is also part of the Berlin Ethics certificate.
- Online on-boarding meetings are offered on April 16 (14:15) and April 23 (14:15). The link will be communicated.
- The course starts immediately after easter with a small pre-exercise to be conducted by each participant individually.
- Very important is that students then meet for one week in person in Berlin from 28. April to 2. Mai. Participation in this intensive (but also great fun) daily event at TU Berlin is crucial, since it is here where the interdisciplinary and interinstitutional working teams are formed and where the working topics are defined in interaction with the supervisors.
- After the intensive meeting in Berlin the teams work independently via the internet; the group typically meets online with their supervisors each Wednesday (early afternoon).
- Group project presentations are scheduled for June 11; after this date the groups then work on their joint final report.
- This course is challenging but also fun, and you can expect to build an international network of other students who are interested in assessing critical aspects of AI.
Contact for administrational questions at TU Berlin: Leon Dirmeier (dirmeier@campus.tu-berlin.de)
-
19302802
Practice seminar
Practice seminar for Applied Biometrics (Andreas Wolf)
Schedule: Mo 10:00-12:00 (Class starts on: 2025-04-14)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19325302
Practice seminar
Practice seminar for Cluster Computing (Barry Linnert)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: T9/K44 Rechnerpoolraum (Takustr. 9)
-
19327402
Practice seminar
Practice seminar for image- und video coding (Heiko Schwarz)
Schedule: Mo 12:00-14:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
-
19331102
Practice seminar
Practice Session on Human Centered Data Science (Claudia Müller-Birn)
Schedule: Di 16:00-18:00 (Class starts on: 2025-04-15)
Location: T9/SR 006 Seminarraum (Takustr. 9)
-
19333102
Practice seminar
Practice seminar for Cybersecurity and AI II (Gerhard Wunder)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-28)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
-
19333702
Practice seminar
Ethics and Epistemology of AI (Christoph Benzmüller)
Schedule: -
Location: keine Angabe
-
19302801
Lecture
-
Special Aspects of Applied Computer Science
0089cA1.28-
19302801
Lecture
Applied Biometrics (Andreas Wolf)
Schedule: Mo 08:00-10:00 (Class starts on: 2025-04-14)
Location: T9/K40 Multimediaraum (Takustr. 9)
Additional information / Pre-requisites
Die Lehrveranstaltung soll am Freitag den 12. April beginnen.
Das Vorlesungsskript liegt unter
https://drive.google.com/drive/folders/0B7NhYbv9QewkRkk2WVRuM2Rqd00?usp=sharing
Webex Link zu der Veranstaltung:
Meeting-Link: https://fu-berlin.webex.com/fu-berlin/j.php?MTID=m2cc50d96918fcaeb09f3c36a264f4f29
Meeting-ID: 121 079 7504
Meeting-Password: mCwDw274PS8
Comments
The lecture held by Dr. Andreas Wolf (from the Bundesdruckerei) He will give a broad overview of biometric processes and applications. He will also address the current issues with ePassports and new electronic identity cards.
The course aims to include:
- General structure of biometric systems
- Features of biometric modalities
- IT security and risk assessment
- Errors in biometric processes
- Fingerprinting
- Facial and iris recognition
- Speaker recognition and other modalities
- Standards
- ePassport
Next to the theoretical foundations of biometric modalities, the students are to develop the ability to assess the applicability of biometrics in various scenarios.
-
19325301
Lecture
Cluster Computing (Barry Linnert)
Schedule: Di 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
Target group
- Computer Science Master students
Requirements
- Experience with computers and software as well as programing skills.
Language
- The course language is German (or English if requested).
- The exam will be formulated in German, but answers may be given in English, too.
Credits & Exams
The criteria for gaining credits are
- active participation in the tutorials: regular preparation of assignements & presentation of results in the tutorials
- passing of the exam
Website
https://www.mi.fu-berlin.de/w/SE/VorlesungClusterComputing
Comments
Cluster computer are the prevailing type of high performance computers. They are built of custom off-the-shelf processor boards that are connected by a high speed interconnection network. Although usually locally integrated, they are conceptually distributed systems with local operating system images. Their enormous potential, however, can only be exploited, if program code and data are optimally distributed across the nodes. Cluster management mechanisms also need to be scalable to be employed in systems with thousands of nodes. The lecture course gives an overview of the architecture of cluster computers and the related management problems for which algorithmic solutions are presented.
Suggested reading
- Heiss, H.-U.: Prozessorzuteilung in Parallelrechnern, BI-Verlag, Mannheim, 1996
- Andrews, G. A.: Foundations of Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000
- Pfister, G.: In Search of Clusters 2nd ed., Prentice Hall, 1998
- Zomaya, A.: Parallel and distributed computing handbook, McGraw Gill, 1995
- Buyya, R.: High Performance Cluster Computing, Vol. 1+2, Prentice Hall, 1999
-
19327401
Lecture
Image- and video coding (Heiko Schwarz)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
Comments
This course introduces the most important concepts and algorithms that are used in modern image and video coding approaches. We will particularly focus on techniques that are found in current international video coding standards.
In a short first part, we introduce the so-called raw data formats, which are used as input and output formats of image and video codecs. This part covers the following topics:
- Colour spaces and their relation to human visual perception
- Transfer functions (gamma encoding)
- Why do we use the YCbCr format?
The second part of the course deals with still image coding and includes the following topics:
- The start: How does JPEG work?
- Why do we use the Discrete Cosine Transform?
- Efficient coding of transform coefficients
- Prediction of image blocks
- Adaptive block partitioning
- How do we take decisions in an encoder?
- Optimized quantization
In the third part, we discuss approaches that make video coding much more efficient than coding all pictures using still image coding techniques:
- Motion-compensated prediction
- Coding of motion vectors
- Algorithms for motion estimation
- Sub-sample accurate motion vectors and interpolation filters
- Usage of multiple reference pictures
- What are B pictures and why do we use them?
- Deblocking and deringing filters
- Efficient temporal coding structures
In the exercises, we will implement our own image codec (in a gradual manner). We may extend it to a simple video codec.
Suggested reading
- Bull, D. R., “Communicating Pictures: A Course in Image and Video Coding,” Elsevier, 2014.
- Ohm, J.-R., “Multimedia Signal Coding and Transmission,” Springer, 2015.
- Wien, M., “High Efficiency Video Coding — Coding Tools and Specifications,” Springer 2014.
- Sze, V., Budagavi, M., and Sullivan, G. J. (eds.), “High Efficiency Video Coding (HEVC): Algorithm and Architectures,” Springer, 2014.
- Wiegand, T. and Schwarz, H., "Source Coding: Part I of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 4, no. 1–2, 2011.
- Schwarz, H. and Wiegand, T., “Video Coding: Part II of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 10, no. 1–3, 2016.
-
19331101
Lecture
Human Centered Data Science (Claudia Müller-Birn)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: T9/SR 006 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
[link HCC-Webseite aktuelles Semester]
Comments
In recent years, data science has developed rapidly, primarily due to the progress in machine learning. This development has opened up new opportunities in a variety of social, scientific, and technological areas. From the experience of recent years, however, it is becoming increasingly clear that the concentration on purely statistical and numerical aspects in data science fails to capture social nuances or take ethical criteria into account. The research area Human-Centered Data Science closes this gap at the intersection of Human-Computer Interaction (HCI), Computer-Supported Cooperative Work (CSCW), Human Computation, and the statistical and numerical techniques of Data Science.
Human-Centered Data Science (HCDS) focuses on fundamental principles of data science and its human implications, including research ethics; data privacy; legal frameworks; algorithmic bias, transparency, fairness, and accountability; data provenance, curation, preservation, and reproducibility; user experience design and research for big data; human computation; effective oral, written, and visual scientific communication; and societal impacts of data science.
At the end of this course, students will understand the main concepts, theories, practices, and different perspectives on which data can be collected and manipulated. Furthermore, students will be able to realize the impact of current technological developments may have on society.
This course curriculum was initially developed by Jonathan T. Morgan, Cecilia Aragon, Os Keyes, and Brock Craft. We have adapted the curriculum for the European context and our specific understanding of the field.
Suggested reading
Kogan, M., Halfaker, A., Guha, S., Aragon, C., Muller, M., & Geiger, S. (2020, January). Mapping Out Human-Centered Data Science: Methods, Approaches, and Best Practices. In Companion of the 2020 ACM International Conference on Supporting Group Work (pp. 151-156).
-
19333101
Lecture
Cybersecurity and AI II: Explainability (Gerhard Wunder)
Schedule: Mo 12:00-14:00, Di 10:00-12:00, Fr 12:00-14:00 (Class starts on: 2025-04-15)
Location: 1.3.21 Seminarraum T1 (Arnimallee 14)
-
19333701
Lecture
Ethics and Epistemology of AI (Christoph Benzmüller)
Schedule: -
Location: keine Angabe
Comments
The course Ethics and Epistemology of AI will be offered again in summer 2025 in cooperation with the TU Berlin (Prof. Sabine Ammon) and U Bamberg. It will bring together an interdisciplinary mix of students from different institutions, including BUA Berlin and Erasmus students.
Innovative. Experimental. Interdisciplinary.
More Information: https://www.tu.berlin/en/philtech/study-and-teaching/courses/ethics-and-epistemology-of-ai
Information for interested students:
- The course primarily targets masters students with interest in assessing critical aspects of latest artificial intelligence technology and to explore possible solutions and improvements; the course is also part of the Berlin Ethics certificate.
- Online on-boarding meetings are offered on April 16 (14:15) and April 23 (14:15). The link will be communicated.
- The course starts immediately after easter with a small pre-exercise to be conducted by each participant individually.
- Very important is that students then meet for one week in person in Berlin from 28. April to 2. Mai. Participation in this intensive (but also great fun) daily event at TU Berlin is crucial, since it is here where the interdisciplinary and interinstitutional working teams are formed and where the working topics are defined in interaction with the supervisors.
- After the intensive meeting in Berlin the teams work independently via the internet; the group typically meets online with their supervisors each Wednesday (early afternoon).
- Group project presentations are scheduled for June 11; after this date the groups then work on their joint final report.
- This course is challenging but also fun, and you can expect to build an international network of other students who are interested in assessing critical aspects of AI.
Contact for administrational questions at TU Berlin: Leon Dirmeier (dirmeier@campus.tu-berlin.de)
-
19336901
Lecture
Advanced Data Visualization for Artificial Intelligence (Georges Hattab)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
Comments
The lecture on Advanced Data Visualization for Artificial Intelligence is a comprehensive exploration of state-of-the-art techniques and tools to create and validate complex visualizations for communicating data insights and stories, with a specific focus on applications in Natural Language Processing (NLP) and Explainable AI. The lecture will introduce participants to the nested model of visualization, which encompasses four layers: characterizing the task and data, abstracting into operations and data types, designing visual encoding and interaction techniques, and creating algorithms to execute techniques efficiently. This model will serve as a framework for designing and validating data visualizations.
Furthermore, the lecture will delve into the application of data visualization in NLP, emphasizing the visualization of word embeddings and language models to aid in the exploration of semantic relationships between words and the interpretation of language model behavior. In the context of Explainable AI, the focus will be on using visualizations to explain model predictions and feature importance, thereby enhancing the interpretability of AI models. By leveraging the nested model of visualization and focusing on NLP and Explainable AI, the lecture aims to empower participants with the essential skills to design and validate advanced data visualizations tailored to these specific applications, ultimately enabling them to effectively communicate complex data patterns and gain deeper insights from their data. -
19302802
Practice seminar
Practice seminar for Applied Biometrics (Andreas Wolf)
Schedule: Mo 10:00-12:00 (Class starts on: 2025-04-14)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19325302
Practice seminar
Practice seminar for Cluster Computing (Barry Linnert)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: T9/K44 Rechnerpoolraum (Takustr. 9)
-
19327402
Practice seminar
Practice seminar for image- und video coding (Heiko Schwarz)
Schedule: Mo 12:00-14:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
-
19331102
Practice seminar
Practice Session on Human Centered Data Science (Claudia Müller-Birn)
Schedule: Di 16:00-18:00 (Class starts on: 2025-04-15)
Location: T9/SR 006 Seminarraum (Takustr. 9)
-
19333102
Practice seminar
Practice seminar for Cybersecurity and AI II (Gerhard Wunder)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-28)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
-
19333702
Practice seminar
Ethics and Epistemology of AI (Christoph Benzmüller)
Schedule: -
Location: keine Angabe
-
19336902
Practice seminar
Ü: Advanced Data Visualization for Artificial Intelligence (Georges Hattab)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19302801
Lecture
-
Special Aspects of Software Development
0089cA1.30-
19336901
Lecture
Advanced Data Visualization for Artificial Intelligence (Georges Hattab)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
Comments
The lecture on Advanced Data Visualization for Artificial Intelligence is a comprehensive exploration of state-of-the-art techniques and tools to create and validate complex visualizations for communicating data insights and stories, with a specific focus on applications in Natural Language Processing (NLP) and Explainable AI. The lecture will introduce participants to the nested model of visualization, which encompasses four layers: characterizing the task and data, abstracting into operations and data types, designing visual encoding and interaction techniques, and creating algorithms to execute techniques efficiently. This model will serve as a framework for designing and validating data visualizations.
Furthermore, the lecture will delve into the application of data visualization in NLP, emphasizing the visualization of word embeddings and language models to aid in the exploration of semantic relationships between words and the interpretation of language model behavior. In the context of Explainable AI, the focus will be on using visualizations to explain model predictions and feature importance, thereby enhancing the interpretability of AI models. By leveraging the nested model of visualization and focusing on NLP and Explainable AI, the lecture aims to empower participants with the essential skills to design and validate advanced data visualizations tailored to these specific applications, ultimately enabling them to effectively communicate complex data patterns and gain deeper insights from their data. -
19336902
Practice seminar
Ü: Advanced Data Visualization for Artificial Intelligence (Georges Hattab)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19336901
Lecture
-
Selected Topics in Applied Computer Science
0089cA1.31-
19326601
Lecture
Markov Chains (Katinka Wolter)
Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/Gr. Hörsaal (Takustr. 9)
Comments
In this course we will study stochastic models commonly used to analyse the performance of dynamic systems. Markov models and queues are used to study the behaviour over time of a wide range of systems, from computer hardware, communication systems, biological systems, epidemics, traffic networks to crypto-currencies. We will take a tour of the basics of Markov modelling, starting from birth-death processes, the Poisson process to general Markov and semi-Markov processes and solution methods for those processes. Then we will look at queueing models and queueing networks with exact and approximate solution algorithms. If time allows we will finally study some of the foundations of discrete event simulation.
Suggested reading
William Stewart. Probability, Markov Chains, Queues and Simulation. Princeton University Press 2009.
-
19326602
Practice seminar
Practice seminar for Markov Chains (Justus Purat)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19326601
Lecture
-
Empirical Evaluation in Computer Science
0089cA1.5-
19303401
Lecture
Empirical Methods in Software Engineering (Lutz Prechelt)
Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: T9/049 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
The course language is German, but the actual slides and practice sheets are in English.
The exam will be formulated in German, but answers may be given in English, too.
Homepage: http://www.inf.fu-berlin.de/w/SE/VorlesungEmpirie
Comments
Software Engineering is a field of so-high socio-technical complexity that the properties (let alone the usefulness) of proposed methods and tools are not at all obvious. We need to evaluate them empirically.
This course introduces two different manners in which one can think about this situation and approach evaluations:
- A quantitative perspective. This aims at quantified statements about the tools and methods and is based on a positivist epistemological stance and corresponding culture.
- A qualitative perspective. This aims at making sense of the things that are going on to create the phenomena that give rise to the quantitative outcomes. This perspective is based on an interpretivist epistemological stance and has a culture that values different things.
Both perspectives have different strengths and weaknesses and are suitable for different types of research interest. In this course, we will learn to think in both of these perspectives and to appreciate the different benefits they provide. We will learn what it means that a study has high quality: it has high credibility and high relevance. We will train diagnosing the various quality problems that often reduce credibility or relevance.
We will work through the most common research methods and will discuss real examples (interesting published studies) of each, along with their strengths and weaknesses.
Participants will understand how and when to apply each method and for one of them develop some practical skills by doing so.
Suggested reading
- Jacob Cohen: The Earth Is Round (p > .05). American Psychologist 49(12): 997003, 1994. Darrell Huff: How to lie with statistics, Penguin 1991.
- John C. Knight, Nancy G. Leveson: An Experimental Evaluation of the Assumption of Independence in Multi-Version Programming. IEEE Transactions on Software Engineering 12(1):9609, January 1986.
- John C. Knight, Nancy G. Leveson: A Reply to the Criticisms of the Knight and Leveson Experiment. Software Engineering Notes 15(1):24-35, January 1990.
- Audris Mockus, Roy T. Fielding, James D. Herbsleb: Two Case Studies of Open Source Software Development: Apache and Mozilla. ACM Transactions of Software Engineering and Methodology 11(3):309-346, July 2002.
- Timothy Lethbridge: What Knowledge Is Important to a Software Professional? IEEE Computer 33(5):44-50, May 2000.
- David A. Scanlan: Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE Software 6(5):28-36, September 1989.
- Ben Shneiderman, Richard Mayer, Don McKay, Peter Heller: Experimental investigations of the utility of detailed flowcharts in programming. Commun. ACM 20(6):373-381, 1977.
- Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, Walter F. Tichy: Two Controlled Experiments Assessing the Usefulness of Design Pattern Documentation in Program Maintenance. IEEE Transactions on Software Engineering 28(6):595-606, 2002.
- Lutz Prechelt. An Empirical Comparison of Seven Programming Languages: Computer 33(10):23-29, October 2000.
- Lutz Prechelt: An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a search/string-processing program. Technical Report 2000-5, March 2000.
- Tom DeMarco, Tim Lister: Programmer performance and the effects of the workplace. Proceedings of the 8th international conference on Software engineering. IEEE Computer Society Press, 268-272, 1985.
- John L. Henning: SPEC CPU2000: Measuring CPU Performance in the New Millennium. Computer 33(7):28-35, July 2000.
- Susan Elliot Sim, Steve Easterbrook, Richard C. Holt: Using Benchmarking to Advance Research: A Challenge to Software Engineering. Proceedings of the 25th International Conference on Software Engineering (ICSE'03). 2003.
- Ellen M. Voorhees, Donna Harman: Overview of the Eighth Text REtrieval Conference (TREC-8).
- Susan Elliott Sim, Richard C. Holt: The Ramp-Up Problem in Software Projects: A case Study of How Software Immigrants Naturalize. Proceedings of the 20th international conference on Software engineering, April 19-25, 1998, Kyoto, Japan: 361-370.
- Oliver Laitenberger, Thomas Beil, Thilo Schwinn: An Industrial Case Study to Examine a Non-Traditional Inspection Implementation for Requirements Specifications. Empirical Software Engineering 7(4): 345-374, 2002.
- Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, Scott Shenker: Making Gnutella-like P2P Systems Scalable. Proceedings of ACM SIGCOMM 2003. April 2003.
- Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, Audris Mockus: Does Code Decay? Assessing the Evidence from Change Management Data. IEEE Transactions of Software Engineering 27(1):12, 2001.
- Chris Sauer, D. Ross Jeffrey, Lesley Land, Philip Yetton: The Effectiveness of Software Development Technical Reviews: A Behaviorally Motivated Program of Research. IEEE Transactions on Software Engineering 26(1):14, January 2000.
-
19303402
Practice seminar
Practice seminar for Empirical Methods in Software Engineering (Lutz Prechelt)
Schedule: Mi 08:00-10:00 (Class starts on: 2025-04-16)
Location: T9/046 Seminarraum (Takustr. 9)
-
19303401
Lecture
-
Software Project: Theoretical Computer Science A
0089cA2.10-
19308312
Project Seminar
Implementation Project: Applications of Algorithms (Mahmoud Elashmawi)
Schedule: Do 08:30-10:00 (Class starts on: 2025-04-10)
Location: T9/053 Seminarraum (Takustr. 9)
Comments
Contents
We choose a typical application area of algorithms, usually for geometric problems, and develop software solutions for it, e.g., computer graphics (representation of objects in a computer, projections, hidden edge and surface removal, lighting, raytracing), computer vision (image processing, filtering, projections, camera calibration, stereo-vision) or pattern recognition (classification, searching).
Prerequsitions
Basic knowledge in design and anaylsis of algorithms.
Suggested reading
je nach Anwendungsgebiet
-
19308312
Project Seminar
-
Current Research Topics in Theoretical Computer Science
0089cA2.3-
19320501
Lecture
Cryptanalysis of Symmetrical Schemes (Marian Margraf)
Schedule: Di 12:00-14:00 (Class starts on: 2025-04-15)
Location: 1.4.03 Seminarraum T2 (Arnimallee 14)
Comments
The lecture aims at a deeper understanding of cryptographic algorithms, especially which design criteria have to be considered for the development of secure encryption algorithms. For that purpose we will get to know and evaluate different cryptanalytic methods for symmetrical and asymmetrical encryption techniques – e.g. linear and differential cryptanalysis on block ciphers, correlation attacks on stream ciphers and algorithms to solve the factorization problem and the discrete logarithm problem. Weaknesses in the implementation, e.g. to exploit side-channel attacks, will be discussed only peripherally.
-
19321101
Lecture
Advanced Data Structures (László Kozma)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: A3/ 024 Seminarraum (Arnimallee 3-5)
Comments
Efficient data structures are important components of all nontrivial algorithms, and are basic building blocks of the modern computing infrastructure. Besides their practical importance, the design and analysis of data structures has revealed a rich mathematical theory. The ultimate theoretical limits of data structures are the subject of deep open questions.
The topic of this course is the design and analysis of advanced data structures (including both classical and recent results).
An earlier course with a similar selection of topics can be seen here:
https://page.mi.fu-berlin.de/lkozma/ds2020Familiarity with algorithmic and relevant mathematical concepts is assumed (e.g., the course "Advanced algorithms" or similar as a prerequisite).
Suggested reading
D. E. Knuth, The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. (Addison-Wesley, 2011), xv+883pp. ISBN 0-201-03804-8
-
19322701
Lecture
Cryptoanalysis of Asymmetrical Schemes (Marian Margraf)
Schedule: Do 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
Comments
Cryptoanalysis of asymmetrical schemes
The lecture deals with different asymmetrical cryptanalytics, in particular with the supposed hard problems of these processes. Some of the contents are
- RSA and the problem of factorization
- DSA and the discrete logarithm problem
- Merkel-Hellman and the knapsack and grid problem
- McEliece and the problem of decoding
- Matsumoto-Imai and the multivariate Polynomial System
Knowledge in the areas of IT security and cryptography is obligatory.
-
19337401
Lecture
Elliptic Curve Cryptography (Marian Margraf)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19320502
Practice seminar
Practice seminar for Cryptanalysis (Marian Margraf)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19321102
Practice seminar
Practice seminar for Advanced Data Structures (N.N.)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: A3/019 Seminarraum (Arnimallee 3-5)
Comments
Übungen
-
19322702
Practice seminar
Practice seminar for Cryptoanalysis of Asymmetrical Schemes (Marian Margraf)
Schedule: Mi 16:00-18:00 (Class starts on: 2025-04-16)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19337402
Practice seminar
Tutorials for Elliptic Curve Cryptography (Marian Margraf)
Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19320501
Lecture
-
Computational Geometry
0089cA2.4-
19313801
Lecture
Computational Geometry (Günther Rothe)
Schedule: Mo 10:00-12:00, Do 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/051 Seminarraum (Takustr. 9)
-
19313802
Practice seminar
Practice seminar for Computational Geometry (Günther Rothe)
Schedule: Fr 14:00-16:00 (Class starts on: 2025-04-25)
Location: T9/SR 006 Seminarraum (Takustr. 9)
-
19313801
Lecture
-
Selected Topics in Theoretical Computer Science
0089cA2.5-
19315401
Lecture
Multiplicative Weights - A Popular Algorithmic Technique with Countless Applications (Wolfgang Mulzer)
Schedule: Di 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Comments
Just like greedy algorithms, dynamic programming, or divide-and-conquer, the multiplicative weights method is a fundamental algorithmic technique with countless applications across disciplines. However, it is taught only rarely in basic classes.
In this class, we will study the multiplicative weights method in detail. We will learn about the basic technique and its variations, explore connections to other fields such as online convex optimization and machine learning, and see the beautiful mathematics that lies behind it.
We will also see many applications of the technique, with examples from combinatorial optimization, machine learning, algorithmic game theory, computational geometry, information theory, online algorithms, and many more. For some of the applications, we will have invited speakers who have applied the technique in their respective fields.
The class is jointly attended by students at Sorbonne Paris Nord in Paris and will be given in a hybrid format.
The course website can be found here: https://www.inf.fu-berlin.de/lehre/SS25/mwu/
Suggested reading
Wird noch bekannt gegeben.
-
19326601
Lecture
Markov Chains (Katinka Wolter)
Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/Gr. Hörsaal (Takustr. 9)
Comments
In this course we will study stochastic models commonly used to analyse the performance of dynamic systems. Markov models and queues are used to study the behaviour over time of a wide range of systems, from computer hardware, communication systems, biological systems, epidemics, traffic networks to crypto-currencies. We will take a tour of the basics of Markov modelling, starting from birth-death processes, the Poisson process to general Markov and semi-Markov processes and solution methods for those processes. Then we will look at queueing models and queueing networks with exact and approximate solution algorithms. If time allows we will finally study some of the foundations of discrete event simulation.
Suggested reading
William Stewart. Probability, Markov Chains, Queues and Simulation. Princeton University Press 2009.
-
19315402
Practice seminar
Practice seminar for Multiplicative Weights (Michaela Krüger)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
-
19326602
Practice seminar
Practice seminar for Markov Chains (Justus Purat)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19315401
Lecture
-
Advanced topics in Theoretical Computer Science
0089cA2.6-
19315401
Lecture
Multiplicative Weights - A Popular Algorithmic Technique with Countless Applications (Wolfgang Mulzer)
Schedule: Di 14:00-16:00, Fr 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Comments
Just like greedy algorithms, dynamic programming, or divide-and-conquer, the multiplicative weights method is a fundamental algorithmic technique with countless applications across disciplines. However, it is taught only rarely in basic classes.
In this class, we will study the multiplicative weights method in detail. We will learn about the basic technique and its variations, explore connections to other fields such as online convex optimization and machine learning, and see the beautiful mathematics that lies behind it.
We will also see many applications of the technique, with examples from combinatorial optimization, machine learning, algorithmic game theory, computational geometry, information theory, online algorithms, and many more. For some of the applications, we will have invited speakers who have applied the technique in their respective fields.
The class is jointly attended by students at Sorbonne Paris Nord in Paris and will be given in a hybrid format.
The course website can be found here: https://www.inf.fu-berlin.de/lehre/SS25/mwu/
Suggested reading
Wird noch bekannt gegeben.
-
19326601
Lecture
Markov Chains (Katinka Wolter)
Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/Gr. Hörsaal (Takustr. 9)
Comments
In this course we will study stochastic models commonly used to analyse the performance of dynamic systems. Markov models and queues are used to study the behaviour over time of a wide range of systems, from computer hardware, communication systems, biological systems, epidemics, traffic networks to crypto-currencies. We will take a tour of the basics of Markov modelling, starting from birth-death processes, the Poisson process to general Markov and semi-Markov processes and solution methods for those processes. Then we will look at queueing models and queueing networks with exact and approximate solution algorithms. If time allows we will finally study some of the foundations of discrete event simulation.
Suggested reading
William Stewart. Probability, Markov Chains, Queues and Simulation. Princeton University Press 2009.
-
19315402
Practice seminar
Practice seminar for Multiplicative Weights (Michaela Krüger)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
-
19326602
Practice seminar
Practice seminar for Markov Chains (Justus Purat)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19315401
Lecture
-
Special aspects of Theoretical Computer Science
0089cA2.7-
19320501
Lecture
Cryptanalysis of Symmetrical Schemes (Marian Margraf)
Schedule: Di 12:00-14:00 (Class starts on: 2025-04-15)
Location: 1.4.03 Seminarraum T2 (Arnimallee 14)
Comments
The lecture aims at a deeper understanding of cryptographic algorithms, especially which design criteria have to be considered for the development of secure encryption algorithms. For that purpose we will get to know and evaluate different cryptanalytic methods for symmetrical and asymmetrical encryption techniques – e.g. linear and differential cryptanalysis on block ciphers, correlation attacks on stream ciphers and algorithms to solve the factorization problem and the discrete logarithm problem. Weaknesses in the implementation, e.g. to exploit side-channel attacks, will be discussed only peripherally.
-
19321101
Lecture
Advanced Data Structures (László Kozma)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: A3/ 024 Seminarraum (Arnimallee 3-5)
Comments
Efficient data structures are important components of all nontrivial algorithms, and are basic building blocks of the modern computing infrastructure. Besides their practical importance, the design and analysis of data structures has revealed a rich mathematical theory. The ultimate theoretical limits of data structures are the subject of deep open questions.
The topic of this course is the design and analysis of advanced data structures (including both classical and recent results).
An earlier course with a similar selection of topics can be seen here:
https://page.mi.fu-berlin.de/lkozma/ds2020Familiarity with algorithmic and relevant mathematical concepts is assumed (e.g., the course "Advanced algorithms" or similar as a prerequisite).
Suggested reading
D. E. Knuth, The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. (Addison-Wesley, 2011), xv+883pp. ISBN 0-201-03804-8
-
19322701
Lecture
Cryptoanalysis of Asymmetrical Schemes (Marian Margraf)
Schedule: Do 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
Comments
Cryptoanalysis of asymmetrical schemes
The lecture deals with different asymmetrical cryptanalytics, in particular with the supposed hard problems of these processes. Some of the contents are
- RSA and the problem of factorization
- DSA and the discrete logarithm problem
- Merkel-Hellman and the knapsack and grid problem
- McEliece and the problem of decoding
- Matsumoto-Imai and the multivariate Polynomial System
Knowledge in the areas of IT security and cryptography is obligatory.
-
19337401
Lecture
Elliptic Curve Cryptography (Marian Margraf)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19320502
Practice seminar
Practice seminar for Cryptanalysis (Marian Margraf)
Schedule: Mi 14:00-16:00 (Class starts on: 2025-04-16)
Location: T9/SR 005 Übungsraum (Takustr. 9)
-
19321102
Practice seminar
Practice seminar for Advanced Data Structures (N.N.)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: A3/019 Seminarraum (Arnimallee 3-5)
Comments
Übungen
-
19322702
Practice seminar
Practice seminar for Cryptoanalysis of Asymmetrical Schemes (Marian Margraf)
Schedule: Mi 16:00-18:00 (Class starts on: 2025-04-16)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19337402
Practice seminar
Tutorials for Elliptic Curve Cryptography (Marian Margraf)
Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
Location: T9/K40 Multimediaraum (Takustr. 9)
-
19320501
Lecture
-
Current Research Topics in Computer Systems
0089cA3.10-
19325301
Lecture
Cluster Computing (Barry Linnert)
Schedule: Di 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
Target group
- Computer Science Master students
Requirements
- Experience with computers and software as well as programing skills.
Language
- The course language is German (or English if requested).
- The exam will be formulated in German, but answers may be given in English, too.
Credits & Exams
The criteria for gaining credits are
- active participation in the tutorials: regular preparation of assignements & presentation of results in the tutorials
- passing of the exam
Website
https://www.mi.fu-berlin.de/w/SE/VorlesungClusterComputing
Comments
Cluster computer are the prevailing type of high performance computers. They are built of custom off-the-shelf processor boards that are connected by a high speed interconnection network. Although usually locally integrated, they are conceptually distributed systems with local operating system images. Their enormous potential, however, can only be exploited, if program code and data are optimally distributed across the nodes. Cluster management mechanisms also need to be scalable to be employed in systems with thousands of nodes. The lecture course gives an overview of the architecture of cluster computers and the related management problems for which algorithmic solutions are presented.
Suggested reading
- Heiss, H.-U.: Prozessorzuteilung in Parallelrechnern, BI-Verlag, Mannheim, 1996
- Andrews, G. A.: Foundations of Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000
- Pfister, G.: In Search of Clusters 2nd ed., Prentice Hall, 1998
- Zomaya, A.: Parallel and distributed computing handbook, McGraw Gill, 1995
- Buyya, R.: High Performance Cluster Computing, Vol. 1+2, Prentice Hall, 1999
-
19327401
Lecture
Image- and video coding (Heiko Schwarz)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
Comments
This course introduces the most important concepts and algorithms that are used in modern image and video coding approaches. We will particularly focus on techniques that are found in current international video coding standards.
In a short first part, we introduce the so-called raw data formats, which are used as input and output formats of image and video codecs. This part covers the following topics:
- Colour spaces and their relation to human visual perception
- Transfer functions (gamma encoding)
- Why do we use the YCbCr format?
The second part of the course deals with still image coding and includes the following topics:
- The start: How does JPEG work?
- Why do we use the Discrete Cosine Transform?
- Efficient coding of transform coefficients
- Prediction of image blocks
- Adaptive block partitioning
- How do we take decisions in an encoder?
- Optimized quantization
In the third part, we discuss approaches that make video coding much more efficient than coding all pictures using still image coding techniques:
- Motion-compensated prediction
- Coding of motion vectors
- Algorithms for motion estimation
- Sub-sample accurate motion vectors and interpolation filters
- Usage of multiple reference pictures
- What are B pictures and why do we use them?
- Deblocking and deringing filters
- Efficient temporal coding structures
In the exercises, we will implement our own image codec (in a gradual manner). We may extend it to a simple video codec.
Suggested reading
- Bull, D. R., “Communicating Pictures: A Course in Image and Video Coding,” Elsevier, 2014.
- Ohm, J.-R., “Multimedia Signal Coding and Transmission,” Springer, 2015.
- Wien, M., “High Efficiency Video Coding — Coding Tools and Specifications,” Springer 2014.
- Sze, V., Budagavi, M., and Sullivan, G. J. (eds.), “High Efficiency Video Coding (HEVC): Algorithm and Architectures,” Springer, 2014.
- Wiegand, T. and Schwarz, H., "Source Coding: Part I of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 4, no. 1–2, 2011.
- Schwarz, H. and Wiegand, T., “Video Coding: Part II of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 10, no. 1–3, 2016.
-
19325302
Practice seminar
Practice seminar for Cluster Computing (Barry Linnert)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: T9/K44 Rechnerpoolraum (Takustr. 9)
-
19327402
Practice seminar
Practice seminar for image- und video coding (Heiko Schwarz)
Schedule: Mo 12:00-14:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
-
19325301
Lecture
-
Special Aspects of Computer Systems
0089cA3.11-
19325301
Lecture
Cluster Computing (Barry Linnert)
Schedule: Di 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/055 Seminarraum (Takustr. 9)
Additional information / Pre-requisites
Target group
- Computer Science Master students
Requirements
- Experience with computers and software as well as programing skills.
Language
- The course language is German (or English if requested).
- The exam will be formulated in German, but answers may be given in English, too.
Credits & Exams
The criteria for gaining credits are
- active participation in the tutorials: regular preparation of assignements & presentation of results in the tutorials
- passing of the exam
Website
https://www.mi.fu-berlin.de/w/SE/VorlesungClusterComputing
Comments
Cluster computer are the prevailing type of high performance computers. They are built of custom off-the-shelf processor boards that are connected by a high speed interconnection network. Although usually locally integrated, they are conceptually distributed systems with local operating system images. Their enormous potential, however, can only be exploited, if program code and data are optimally distributed across the nodes. Cluster management mechanisms also need to be scalable to be employed in systems with thousands of nodes. The lecture course gives an overview of the architecture of cluster computers and the related management problems for which algorithmic solutions are presented.
Suggested reading
- Heiss, H.-U.: Prozessorzuteilung in Parallelrechnern, BI-Verlag, Mannheim, 1996
- Andrews, G. A.: Foundations of Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000
- Pfister, G.: In Search of Clusters 2nd ed., Prentice Hall, 1998
- Zomaya, A.: Parallel and distributed computing handbook, McGraw Gill, 1995
- Buyya, R.: High Performance Cluster Computing, Vol. 1+2, Prentice Hall, 1999
-
19327401
Lecture
Image- and video coding (Heiko Schwarz)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
Comments
This course introduces the most important concepts and algorithms that are used in modern image and video coding approaches. We will particularly focus on techniques that are found in current international video coding standards.
In a short first part, we introduce the so-called raw data formats, which are used as input and output formats of image and video codecs. This part covers the following topics:
- Colour spaces and their relation to human visual perception
- Transfer functions (gamma encoding)
- Why do we use the YCbCr format?
The second part of the course deals with still image coding and includes the following topics:
- The start: How does JPEG work?
- Why do we use the Discrete Cosine Transform?
- Efficient coding of transform coefficients
- Prediction of image blocks
- Adaptive block partitioning
- How do we take decisions in an encoder?
- Optimized quantization
In the third part, we discuss approaches that make video coding much more efficient than coding all pictures using still image coding techniques:
- Motion-compensated prediction
- Coding of motion vectors
- Algorithms for motion estimation
- Sub-sample accurate motion vectors and interpolation filters
- Usage of multiple reference pictures
- What are B pictures and why do we use them?
- Deblocking and deringing filters
- Efficient temporal coding structures
In the exercises, we will implement our own image codec (in a gradual manner). We may extend it to a simple video codec.
Suggested reading
- Bull, D. R., “Communicating Pictures: A Course in Image and Video Coding,” Elsevier, 2014.
- Ohm, J.-R., “Multimedia Signal Coding and Transmission,” Springer, 2015.
- Wien, M., “High Efficiency Video Coding — Coding Tools and Specifications,” Springer 2014.
- Sze, V., Budagavi, M., and Sullivan, G. J. (eds.), “High Efficiency Video Coding (HEVC): Algorithm and Architectures,” Springer, 2014.
- Wiegand, T. and Schwarz, H., "Source Coding: Part I of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 4, no. 1–2, 2011.
- Schwarz, H. and Wiegand, T., “Video Coding: Part II of Fundamentals of Source and Video Coding,” Foundations and Trends in Signal Processing, Now Publishers, vol. 10, no. 1–3, 2016.
-
19325302
Practice seminar
Practice seminar for Cluster Computing (Barry Linnert)
Schedule: Do 10:00-12:00 (Class starts on: 2025-04-17)
Location: T9/K44 Rechnerpoolraum (Takustr. 9)
-
19327402
Practice seminar
Practice seminar for image- und video coding (Heiko Schwarz)
Schedule: Mo 12:00-14:00 (Class starts on: 2025-04-14)
Location: T9/053 Seminarraum (Takustr. 9)
-
19325301
Lecture
-
Microprocessor Lab
0089cA3.2-
19310030
Internship
Practical Project: Microprocessors (Larissa Groth)
Schedule: Mo 16:00-18:00, Di 14:00-16:00, Mi 12:00-14:00 (Class starts on: 2025-04-14)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Additional information / Pre-requisites
Important information about the course:
The microprocessor practical course will be offered this semester with a joint theory session on Wednesdays, 12-14 o'clock, and two independent practical exercise sessions:- Group A, Mondays, 4-6 p.m. Takustraße 9, Room K63
- Group B, Tuesdays, 2-4 p.m. Takustraße 9, Room K63
One of these practice dates must be chosen.
Comments
ATTENTION: Contrary to the schedule in the course catalog, this course does not have 3 mandatory dates, but only 2! See below for further information!
The overwhelming majority of future computer systems will be characterized by communicating, embedded systems. These are found in machine controls, household appliances, motor vehicles, airplanes, intelligent buildings, etc. and will in future be increasingly integrated into networks such as the Internet.
The internship will address the architecture of embedded systems and demonstrate the differences to traditional PC architectures (e.g., real-time capability, interaction with the environment) with practical examples. The internship is based on 16- and 32-bit microcontroller systems.
The main focus of the internship is the following:
register structures
memory organization
Hardware assembler and high-language programming
I / O system and timer programming
Interrupt system
Watchdog logic
Analog interface
Bus system connection of components
Communication (serial, CAN bus, Ethernet, radio and USB)
Control of models and use of different sensorsSuggested reading
- Brian W. Kernighan, Dennis M. Ritchie: The C Programming Language, Second Edition, Prentice Hall, 1988.
-
19310030
Internship
-
Mobile Communications
0089cA3.3-
19303901
Lecture
Mobile Communications (Jochen Schiller)
Schedule: Mi 10:00-12:00 (Class starts on: 2025-04-16)
Location: T9/049 Seminarraum (Takustr. 9)
Comments
The module mobile communication presents major topics from mobile and wireless communications - the key drivers behind today's communication industry that influence everybody's daily life.
The whole lecture focuses on a system perspective giving many pointers to real systems, standardization and current research.
The format of the lecture is the flipped classroom, i.e., you should watch the videos of a lecture BEFORE participating in the Q&A session. We will then discuss all open issues, answer questions etc. during the Q&A session.
Main topics of the lecture are:
- Basics of wireless transmission: frequencies, signals, antennas, multiplexing, modulation, spread spectrum
- Medium access: SDMA, FDMA, TDMA, CDMA;
- Wireless telecommunication systems: GSM, TETRA, IMT-2000, LTE, 5G
- Wireless local area networks: infrastructure/ad-hoc, IEEE 802.11/15, Bluetooth, ZigBee
- Mobile networking: Mobile IP, ad-hoc networks
- Mobile transport layer: traditional TCP, additional mechanisms
- Outlook: 5 to 6G, low power wireless networks
Suggested reading
Jochen Schiller, Mobilkommunikation, Addison-Wesley, 2.Auflage 2003
Alle Unterlagen verfügbar unter http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/Mobile_Communications/course_Material/index.html
-
19303901
Lecture
-
Robotics
0089cA3.4-
19304701
Lecture
Robotics (Daniel Göhring)
Schedule: Mi 12:00-14:00 (Class starts on: 2025-04-16)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Students interested in robotics with application to autonomous vehicles. Voraussetzungen: As a prerequisite, student should have basic knowledge of maths, in particular linear algebra and a bit of optimization. Students will work with a real model car in the robotics lab.
Comments
Content
This class will give an introduction to robotics. It will be structured into the following parts:
- Generating motion and and dynamic control: This chapter will cover coordinate frames, non-holonomic constraints, Ackermann-drive (in analogy to street cars), PID.
- Planning: Planning around obstacles, path finding, Dijkstra, A*, configuration space obstacles, RRTs, lattice planners, gradient methods, potential fields, splines.
- Localization and mapping: state estimation problem, Bayesian filter, Odometry, Particle & Kalman filter, Extended and Unscented Kalman-Filter, simultaneous localization and mapping (SLAM).
- Vision and perception: SIFT, HOG-features, Deformable parts models, hough transform, lane detection, 3d-point clouds, RANSAC .
After these lectures, students will be able to design basic algorithms for motion, control and state estimation for robotics.
The lecture will be in German, accompanying materials in English.
Suggested reading
Literatur:
John J Craig: Introduction to Robotics: Mechanics and Control; Steven LaValle: Planning Algorithms; Sebastian Thrun, Wolfram Burgard, Dieter Fox: Probabilistic Robotics
-
19304702
Practice seminar
Practice seminar for Robotics (Daniel Göhring)
Schedule: Do 12:00-14:00 (Class starts on: 2025-04-17)
Location: T9/049 Seminarraum (Takustr. 9)
-
19304701
Lecture
-
Software Project: Computer Systems A
0089cA3.6-
19315312
Project Seminar
Software Project: Distributed Systems (Justus Purat)
Schedule: Mi 12:00-14:00 (Class starts on: 2025-04-16)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
-
19334412
Project Seminar
SWP: Szenario-Management in the Future Security Lab (Larissa Groth)
Schedule: Mi 23.04. 14:00-16:00 (Class starts on: 2025-04-23)
Location: T9/K63 Hardwarepraktikum (Takustr. 9)
Comments
The BeLIFE project, part of the working group Telematics & Computer Systems, focuses on improving knowledge transfer and communication in civil security research. A central component of the project is the Future Security Lab, located at the Einstein Center Digital Future (ECDF) in Mitte. The lab welcomes politicians from federal and state levels, as well as representatives from authorities and organizations with security responsibilities.
Within the software project, students develop concepts to optimize and creatively enhance the existing technical infrastructure of the space. The goal is to increase the usability of the space for scientists and improve the user experience for visitors. To achieve this, the software project consists of several sub-areas, either arising from a specific problem to be solved or requiring creative approaches and ingenuity. Tasks include system administration, interface development, as well as light/sound installation and orchestration. Examples of challenges include the parallel startup of all computers in a network via WakeOn LAN from a web app or optimizing the existing web app for scenario presentation.
The tasks are exclusively addressed in small groups (3-5 students). Collaboration and code availability are facilitated through the department's own GitLab or a public GitHub. Results should be well-documented, for example, through README files in Git and a well-structured wiki. Modularity and expandability of the developed code, along with thorough documentation, are crucial for the success of this software project!
Regarding the process, this software project takes place throughout the semester. There are a few mandatory large group meetings with all participants. In addition, there are short weekly meetings where at least one group member reports on the current status. The first date (23.04.25, 14h, K63) will take place at Takustraße 9. At this event, the solutions already implemented will be presented in theory and the problems addressed. A live demo will then take place one week later, on 30.04.2025, in Berlin Mitte at the Future Security Lab, Wilhelmstr. 67, 10117 Berlin. Afterwards, there are a total of three presentation dates: the presentation of an initial approach to problem-solving (14.04.2025), a brief interim presentation (11.06.2025), and the final presentation (16.07.2025).
Students also regularly have the opportunity to work in the Future Security Lab premises, familiarize themselves with the equipment, and conduct tests.
-
19315312
Project Seminar
-
Analysis II
0084dA1.2-
19211601
Lecture
Analysis II (Marita Thomas)
Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Content
This is the continuation of the Analysis I course taught in the previous winter term. Central topics of the course are integration in one space dimension and differential calculus of several variables.
Suggested reading
- O. Forster: Analysis 1 und 2. Vieweg/Springer.
- Königsberger, K: Analysis 1,2, Springer.
- E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
- H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.
-
19211602
Practice seminar
Practice seminar for Analysis II (Marita Thomas)
Schedule: Mi 14:00-16:00, Do 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
Location: 1.1.53 Seminarraum E2 (Arnimallee 14)
-
19211601
Lecture
-
Linear Algebra II
0084dA1.5-
19211701
Lecture
Linear Algebra II (Alexander Schmitt)
Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-14)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Contents:
- Determinants
- Eigenvalues and eigenvectors: diagonalizability, trigonalizability, set of Cayley-Hamilton, Jordanian normal form
- Bilinear forms
- Vectorräume with scalar product: Euclidean, unitary vectorräume, orthogonal projection, isometries, self-adjusted images, Gram-Schmidt orthonormalization methods, major axis transformation
Prerequisites:
Linear Algebra I
Literature:Will be mentioned in the lecture.
-
19211702
Practice seminar
Practice seminar for Linear Algebra II (Alexander Schmitt)
Schedule: Do 08:00-10:00, Do 10:00-12:00, Do 16:00-18:00, Fr 08:00-10:00, Fr 10:00-12:00 (Class starts on: 2025-04-17)
Location: A3/019 Seminarraum (Arnimallee 3-5)
-
19211701
Lecture
-
Computer-Oriented Mathematics II
0084dA1.7-
19211901
Lecture
Computer-oriented Mathematics II (Robert Gruhlke)
Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
Location: T9/Gr. Hörsaal (Takustr. 9)
Additional information / Pre-requisites
Studierende der Mathematik (Monobachelor und Lehramt) und Bioinformatik, sowie Numerikinteressierte aus Physik, Informatik und anderen Natur- und Geisteswissenschaften.
Comments
Inhalt:
Die Auswahl der behandelten numerischen Verfahren enthält Polynominterpolation, Newton-Cotes-Formeln zur numerische Integration und Euler-Verfahren für lineare Differentialgleichungen.
-
19211902
Practice seminar
Practice seminar for Computer-oriented Mathematics II (Robert Gruhlke)
Schedule: Di 08:00-10:00, Di 16:00-18:00, Mi 16:00-18:00, Do 08:00-10:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: A3/ 024 Seminarraum (Arnimallee 3-5)
-
19211901
Lecture
-
Numerical Mathematics I
0084dA1.9-
19212001
Lecture
Numerics I (Claudia Schillings)
Schedule: Mo 10:00-12:00, Mi 10:00-12:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-14)
Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Comments
Numerical methods for: iterative solution of nonlinear systems of equations (fixpoint and Newton methods), curve fitting, interpolation, numerical quadrature, and numerics of ODE systems.
Suggested reading
Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005.
Aus dem FU-Netz auch online verfügbar.
-
19212002
Practice seminar
Practice seminar for Numerics I (N.N.)
Schedule: Di 08:00-10:00, Di 12:00-14:00 (Class starts on: 2025-04-15)
Location: T9/049 Seminarraum (Takustr. 9)
-
19212001
Lecture
-
Academic Work in Mathematics
0084dB1.1-
19203611
Seminar
Proseminar/Seminar: das Buch der Beweise (Giulia Codenotti)
Schedule: Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: A3/SR 115 (Arnimallee 3-5)
Comments
Inhalt: Vorträge zu Gitterproblemen in 2 (und 3) Dimensionen. Weitere Informationen finden Sie auf der Homepage des Proseminars.
-
19213910
Proseminar
Proseminar/Seminar on Number Theory: Geometry of Numbers (Niels Lindner)
Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
Location: A3/SR 119 (Arnimallee 3-5)
Additional information / Pre-requisites
Nötige Vorkenntnisse: Lineare Algebra und eine gewisse Vertrautheit mit den Grundbegriffen der Algebra, etwa "Gruppe", "Ring", "Körper", "Ideal", "Normalteiler", etc.
Comments
This proseminar/seminar deals with Minkowski's "geometry of numbers", which does not only open up a geometric perspective on algebraic number theory, but also enables interesting applications in discrete geometry and combinatorial optimization. More precisely, we will dive into the following topics:
* Minkowski's classical convex body theorems
* Gaussian integers, Fermat's two-squares theorem, Legendre's four-squares theorem
* Algebraic number fields, finiteness of the class number, Dirichlet's unit theorem
* Linear equations over the integers: Hermite and Smith normal forms
* Basics of lattice theory
* Lattice basis reduction and the LLL algorithm
* The shortest vector problem
* Dense sphere packings
* Khinchine's flatness theorem
* Integer linear programming in fixed dimension
The purpose of this list is to offer a coarse thematic overview. The precise seminar topics will be fixed later, together with the participants.
Further information will be provided on the Whiteboard homepage of the seminar at the beginning of the lecture period.
-
19226511
Seminar
Seminar Multiscale Methods in Molecular Simulations (Luigi Delle Site)
Schedule: Fr 12:00-14:00 (Class starts on: 2025-04-25)
Location: Die Veranstaltung findet in der Arnimallee 9 statt (Seminarraum).
Additional information / Pre-requisites
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Comments
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Suggested reading
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19233511
Seminar
Geometric Group Theory (Georg Lehner)
Schedule: Mo 14:00-16:00 (Class starts on: 2025-04-14)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Additional information / Pre-requisites
Aimed at: Bachelor and masters students
Prerequisites: Group theory. Additionally either Geometry (especially elementary non-euclidean geometry) and/or Topology (point-set topology) can be helpful.Comments
Groups are best understood as symmetries of mathematical objects. Whereas finite groups can often be completely understood by their actions on vector spaces, this approach will often fail with infinite groups, such as free groups or hyperbolic groups. Geometric group theory tries to construct natural geometric objects (topological spaces such as manifolds or graphs for example) that these groups act on and allows one to classify the complexity these groups can have.
In this seminar, we will follow Clara Löh's book on the subject. Topics will include Cayley graphs, free groups and their subgroups, quasi-isometry classes of groups, growth types of groups, hyperbolic groups and the Banach-Tarski theorem.Suggested reading
Clara Löh - Geometric Group Theory
-
19239711
Seminar
Advanced Dynamical Systems (Bernold Fiedler)
Schedule: Do 16:00-18:00 (Class starts on: 2025-04-17)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Comments
Students present recent papers on topics in delay equations. Dates only by arrangement.
-
19239911
Seminar
Advanced Differential Equations (Bernold Fiedler)
Schedule: Do 14:00-16:00 (Class starts on: 2025-04-17)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Comments
Students present recent papers on topics in dynamical systems. Dates only by arrangement.
-
19247111
Seminar
Variational methods & Gamma-convergence (Marita Thomas)
Schedule: Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
Comments
This seminar addresses bachelor and master students interested in the analysis of partial differential equations (PDEs). It focuses on elliptic PDEs, where the direct method of the calculus of variations provides a powerful tool to handle linear as well as nonlinear problems by investigating the minimality properties of the functional associated with the PDE. Closely related to this is the method of Gamma-convergence, which allows it to study sequences of functionals and minimization problems. A background with courses in analysis, functional analysis, and introduction to PDEs is useful to attend the seminar, but the topics for the presentations will be adapted to the background of the participants. The main part of the seminar will be held en block in the teaching-free period.
-
19203611
Seminar
-
Special topics in Mathematics
0084dB2.11-
19248101
Lecture
Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
Schedule: Mo 14:00-16:00, Di 14:00-16:00 (Class starts on: 2025-04-15)
Location: A3/ 024 Seminarraum (Arnimallee 3-5)
Comments
Terminhinweis: Die Veranstaltung findet regelmäßig Mo 12‒16 und Di 14‒16 Uhr statt, allerdings mit folgender Ausnahme: Aufgrund des Dies Academicus, den das Institut für Mathematik am ersten Tag des Semesters veranstaltet, gibt es in der ersten Woche abweichende Termine. Für die Einteilung in Kleingruppen, in denen man das Semester über arbeitet, ist es notwendig, beim ersten Treffen am Dienstag, 15. April von 14‒18 Uhr anwesend zu sein.
Leitidee der Veranstaltung
Ziel der Veranstaltung ist es, einen Überblick über die Bedeutung und Anwendbarkeit diverser mathematischer Gebiete im Kontext von Nachhaltigkeit zu bekommen. Ferner soll dies anhand kleinerer Probleme selbst angewendet werden können. Mathematik ist bekanntermaßen überall und besitzt eine hohe gesellschaftliche Relevanz. Insbesondere im Kontext Nachhaltigkeit sollten wir als mathematische Community Verantwortung übernehmen, einen lebenswerten Planeten zu erhalten und unsere Erkenntnisse, Methoden, Verfahren etc. gemeinwohlorientiert einzusetzen. Dies involviert auch die Aufbereitung und Kommunikation der behandelten mathematischen Themenbereiche.Inhaltliche Schwerpunkte
Wir werden eine Einführung in die vier mathematischen Bereiche Optimierung, Spieltheorie, Statistik, Dynamische Systeme geben. Mittels mathematischer Modellierung werden wir identifizieren, wie diese Bereiche zum Verständnis und mit Lösungsansätzen zu Klimakrise, Verlust von Biodiversität, Ressourcenverknappung und sozialer Ungleichheit beitragen.Methodische Konzeption
Diese Veranstaltung wird durch ein zeitgemäßes didaktisches Konzept begleitet. Dazu gehören Elemente aus dem Design Thinking, New Work-Methoden wie agiles Arbeiten, aber auch der Ansatz der student agency. Dies bedeutet, dass Lernende Verantwortung für ihren Lernerfolg und Kompetenzzuwachs übernehmen, dabei aber natürlich nicht auf sich alleine gestellt sind, sondern auf diverse inhaltliche bzw. methodische Ressourcen zurückgreifen können.Die inhaltliche Arbeit erfolgt in festen Kleingruppen, die zu jedem mathematischen Themenfeld ein Anwendungsszenario erarbeitet. Dazu werden kleinere reale Probleme bzw. entsprechende mathematische Forschungspaper als Aufhänger und Ausgangspunkt für die Gruppenarbeit ausgewählt.
Jeder dieser thematischen „eduSCRUM-Sprints“ besteht aus Planung, Durchführung, Präsentation und endet mit der Reflexion der Arbeitsweisen innerhalb des Teams.Zu jedem der vier mathematischen Bereiche gibt es einen Sprint von ca. drei Wochen. Zwischen den Sprints wird zu jedem Themengebiet eine kleine Challenge (zwei bis drei kurze Aufgaben) veröffentlicht, die in Gruppen bearbeitet abzugeben ist. Der Workload dieser Veranstaltung verteilt sich anteilig ungefähr wie folgt: 30% Präsenztermine (Montag & Dienstag) + 10% Challenges + 60% eduScrum-Projektarbeit
Überblick über die wöchentliche Struktur der Veranstaltung
- Dienstag 14–16 Uhr: Die Vorlesungstermine dienen der kompakten Aufbereitung der benötigten mathematischen Gebiete und bilden damit die fundamentale inhaltliche Grundlage für die Projektarbeit. Wir geben dabei einen Einblick in diverse mathematische Gebiete und ihren Anwendungsbezug.
- Projektarbeitsphase (zwischen Dienstag 16 Uhr und Montag 12 Uhr): Die Projektarbeitsphase dient dem agilen Arbeiten in Kleingruppen, welche über das Semester verteilt mehrere Anwendungen von Mathematik in SDG-Kontext erarbeiten und aufbereiten. Dabei wird sich an der Methode eduSCRUM orientiert, um über das Semester verteilt in mehreren agilen Sprints über jeweils 2-3 Wochen fokussiert zu arbeiten. Erfahrungen im agilen Arbeiten werden nicht vorausgesetzt. Die erarbeiteten Anwendungsszenarien sollen dabei jeweils passend zu den vier inhaltlichen Themenblöcken der Veranstaltung gestaltet werden, wobei die Kleingruppen durch den Einbau partizipativer Elemente an diversen Stellen Gestaltungsspielraum haben.
- Montag 12–16 Uhr: Die „Übungstermine“ dienen dem Austausch zwischen den Gruppen, hier werden die in den Sprints erarbeiteten Themen untereinander vorgestellt und ausführlich diskutiert. Nach jedem Sprint werden innerhalb der Gruppen die Arbeitsweise reflektiert und Absprachen für den folgenden Sprint getroffen. Weiterhin können auch inhaltliche Fragen besprochen oder methodische Unterstützung bei eduScrum angeboten werden.
Lernziele
Die übergeordneten Lernziele dieser Veranstaltung verteilen sich auf fünf Bereiche: Mathematische Grundlagen verstehen und anwenden, Mathematische Modelle anwenden, Modelle beurteilen, Kommunikation von Mathematik im SDG-Kontext & Reflexion des eigenen Lernprozesses.Nach erfolgreicher Teilnahme an der Veranstaltung haben Teilnehmer*innen die folgenden Kompetenzen erlangt:
- Sie verstehen die Bedeutung grundlegender mathematischer Konzepte und Verfahren (aus Optimierung, Spieltheorie, Statistik, Dynamische Systeme). Insbesondere können sie die Terminologie und mathematischen Aussagen präzise erklären und Anwendungsgebiete anhand ausgewählter inner- und außermathematischer Problemstellungen erläutern.
- Sie können mathematische Modelle nutzen, um reale Fragestellungen zu beschreiben und zu analysieren. Dabei können sie verschiedene mathematische Werkzeuge und Techniken verwenden, um qualitative und quantitative Aussagen über die Auswirkungen von Entscheidungen und Maßnahmen zu treffen.
- Sie können die Gültigkeit, Angemessenheit und Grenzen mathematischer Modelle beurteilen, indem sie etwa Modellannahmen, verwendete Daten oder Sensitivität der Ergebnisse analysieren, um fundierte Entscheidungen über die Nutzung dieser Modelle im Bereich nachhaltiger Entwicklung zu treffen.
- Die Ergebnisse mathematischer Analysen und Modelle können klar und prägnant an verschiedene Zielgruppen unter Nutzung verschiedener Medien und Formate kommuniziert werden. Dies geschieht mit dem Ziel, das gesellschaftliche Bewusstsein für die Bedeutung von Mathematik für BNE sowie transformative Prozesse zu fördern.
- Sie können die eigenen Lernerfahrungen reflektieren, indem sie individuelle Stärken, Lernstrategien, Einstellungen zur Mathematik und ihr mathematisches Selbstkonzept analysieren, um ihre mathematischen Kompetenzen weiterzuentwickeln und so später ihre Rolle als mündige und verantwortungsvolle Bürger*innen in der Gesellschaft auszufüllen.
Formalia & Organisatorisches
a) Für die regelmäßige Teilnahme ist regelmäßig und in Person an den Terminen montags teilzunehmen.
b) Die aktive Teilnahme an der Projektarbeit besteht aus mehreren Aspekten, die über das Semester verteilt in Kleingruppen bearbeitet werden:- Die im Rahmen der eduSCRUM-Sprints erarbeiteten Anwendungsszenarien werden zum Ende des Sprints präsentiert und zugleich durch ein passendes digitales Produkt gesichert.
- Die Challenges werden nicht differenziert bewertet, sollen aber bestanden werden.
- Um das formale Aufschreiben von Mathematik zu lernen, ist eine kurze, nicht differenziert bewertete schriftliche Einzelleistung zu einem mathematischen Inhalt vorgesehen.
c) Modulabschlussprüfung: Die Veranstaltung kann entweder im Modul „Spezialthemen der Mathematik“ (B.Sc. Mathematik Mono/Lehramt) oder im Modul „Ergänzungsmodul: Ausgewählte Themen A/B/C“ (M.Sc. Mathematik) belegt werden. Bitte beachten Sie, dass je nach Studiengang differenzierte inhaltliche Anforderungen gestellt werden. Beide Module entsprechen vom Workload-Umfang 10 LP. Als Modulabschlussprüfung werden vsl. mündliche Einzelprüfungen angeboten. Die Details werden in der ersten Sitzung bekanntgegeben.
-
19248102
Practice seminar
Practice seminar for Mathematics and sustainability (Georg Loho, Jan-Hendrik de Wiljes, Benedikt Weygandt)
Schedule: Mo 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: A3/019 Seminarraum (Arnimallee 3-5)
-
19248101
Lecture
-
Complex Analysis
0084dB2.3-
19212801
Lecture
Theory of Functions (Nicolas Perkowski)
Schedule: Di 14:00-16:00, Do 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Comments
Function theory is a classical field of mathematics, which deals with the properties of complex-differentiable functions on the complex number plane and has connections to algebra, analysis, number theory and geometry.
The concept of complex differentiability restricts real-differentiable functions from R2 to R2 to angle-preserving images. We will discover that complex-differentiable functions are quite rigid objects, but they are endowed with many amazing analytical, geometric, and visual properties.
A major result discussed in this lecture is Cauchy's integral theorem which states that the integral of any complexly differentiable function along a closed path in the complex plane is zero. We will see many nice consequences of this result, e.g. Cauchy's integral formula, the residual theorem and a proof of the fundamental theorem of algebra, as well as modern graphical representation methods.
Suggested reading
Literatur:
E. Freitag and R. Busam 'Complex analysis', (Springer) 2nd Edition 2009 (the original German version is called 'Funktionentheorie')
-
19212802
Practice seminar
Practice seminar for Theory of Functions (Julian Kern)
Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
-
19212801
Lecture
-
Geometry
0084dB2.7-
19213101
Lecture
Geometry (Giulia Codenotti)
Schedule: Di 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-04-15)
Location: A6/SR 032 Seminarraum (Arnimallee 6)
Comments
Inhalt
Diese Vorlesung für das Bachelorstudium soll als natürliche Fortsetzung von Lineare Algebra I und II Fundamente legen für Vorlesungen/Zyklen wie Diskrete Geometrie, Algebraische Geometrie und Differenzialgeometrie.
Sie behandelt grundlegende Modelle der Geometrie, insbesondere
euklidische, affine, sphärische, projektive und hyperbolische Geometrie,Möbiusgeometrie, Polarität und Dualität Strukturgruppen, Messen (Längen, Winkel, Volumina), explizite Berechnungen und Anwendungen, Beispiele sowie Illustrationsthemen;
Dabei werden weitere Bezüge hergestellt, zum Beispiel zur Funktionentheorie und zur Numerik.
Suggested reading
Literatur
- Marcel Berger. Geometry I
- David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray. Geometry
- Gerd Fischer. Analytische Geometrie
- V.V. Prasolov und V.M. Tikhomirov. Geometry
-
19213102
Practice seminar
Practice seminar for Geometry (Giulia Codenotti)
Schedule: Mo 10:00-12:00, Mo 16:00-18:00 (Class starts on: 2025-04-14)
Location: A3/SR 119 (Arnimallee 3-5)
-
19213101
Lecture
-
Data Structures and Data Abstraction with Applications
0084dB2.8-
19300101
Lecture
Algorithms and Data Structures (Wolfgang Mulzer)
Schedule: Di 16:00-18:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-15)
Location: Gr. Hörsaal (Raum B.001) (Arnimallee 22)
Comments
Qualification goals
The students can analyze algorithms and data structures and their implementations with respect to running time, space requirements, and correctness. The students can describe different algorithms and data structures for typical applications and know how to use them in concrete settings. They can choose appropriate algorithms and data structures for a given task and are able to adapt them accordingly. Students can explain, identify and use different paradigms for designing new algorithms.
Contents
- abstract machine models
- running time, correctness and space requirements
- worst-case analysis
- algorithms and randomness
- algorithmic paradigms: divide and conquer, greedy, dynamic programming, exhaustive search
- priority queues
- ordered and unordered dictionaries (e.g., search trees, hash tables, skiplists)
- algorithms for strings (string searching and radix trees)
- graph algorithms
Suggested reading
- P. Morin: Open Data Structures, an open content textboox.
- T. H. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, MIT Press, 2022.
- R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley, 2011.
- M. Dietzfelbinger, K. Mehlhorn, P. Sanders. Algorithmen und Datenstrukturen: Die Grundwerkzeuge, Springer, 2014.
- J. Erickson. Algorithms, 2019
- T. Roughgarden. Algorithms Illuminated. Cambridge University Press, 2022.
-
19300102
Practice seminar
Practice seminar for Algorithms and Data Structures (Wolfgang Mulzer)
Schedule: Mo 14:00-16:00, Mo 16:00-18:00, Di 12:00-14:00, Mi 12:00-14:00, Mi 14:00-16:00, Mi 16:00-18:00, Do 16:00-18:00, Fr 14:00-16:00, Fr 16:00-18:00 (Class starts on: 2025-04-14)
Location: T9/051 Seminarraum (Takustr. 9)
-
19300101
Lecture
-
Mathematical Project
0084dB2.9-
19246021
Projekt
Mathematical modeling in discussions of societal challenges (Sarah Wolf, Anina Mischau, Joshua Wiebe)
Schedule: Mi 13:00-17:00 (Class starts on: 2025-04-16)
Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Additional information / Pre-requisites
Die Veranstaltungen mit Schüler*innen können ggf außerhalb der üblichen Veranstaltungszeit stattfinden.
Voraussetzungen:
- mindestens ein Interesse an Programmieren, grundlegende Programmierkenntnisse wären wünschenswert
- Interesse an mathematischer Modellierung und gesellschaftlichen Diskursen
Comments
Dieses Projektseminar steht in Verbindung mit „Schule@DecisionTheatreLab“, einem Experimentallabor für Wissenschaftskommunikation gefördert von der Berlin University Alliance und dem Excellenzcluster MATH+. Das Projekt entwickelt ein innovatives Kommunikationsformat basierend auf mathematischen Modellen und führt dieses mit Gruppen von Schüler*innen durch. Decision Theatres sind Diskussionsveranstaltungen, in denen Teilnehmende eine gesellschaftliche Herausforderung mit Wissenschaftler*innen diskutieren und dabei mit einem mathematischen Modell experimentieren können.
Das Projektseminar ist interdisziplinär ausgerichtet und verbindet mathematische Forschung mit didaktischen und sozialwissenschaftlichen Perspektiven. So werden z.B. einerseits Grundlagen des Kommunikationsformats vorgestellt (bspw. mathematische und agenten-basierte Modellierung oder die Arbeit mit empirischen Informationen), aber auch ein Bezug zum Mathematikunterricht an Schulen und damit zur Vermittlung von Mathematik erarbeitet. Andererseits arbeiten die Studierenden direkt an der Vorbereitung, Durchführung, Beobachtung und Auswertung von Decision Theatre Veranstaltungen mit.
In dem Projektseminar ist ein intensiver Austausch zwischen Studierenden aus dem Monostudiengang und aus dem Lehramtsstudiengang der Mathematik intendiert. Über das Kennenlernen von und die Mitwirkung in einem aktuellen mathematischen wie didaktischen Forschungsprojekt und dessen Abläufe wie Methoden erhalten die Studierende die Chance jeweils ihren Blick über den Tellerand ihres Studiengangs hinaus zu erweitern.
Schwerpunkte im Bereich Mathematik für Schulen:
- Chancen der Einbettung des Kommunikationsformates im Mathematikunterricht
- neue Perspektiven auf Modellieren im Unterricht
- Interaktion mit Schüler*innengruppen
Schwerpunkte im Bereich mathematische Forschung:
- Agenten-basierte Modelle: Definition, Implementierung, Sensitivitätsanalyse, Kalibrierung und Validierung
- synthetische Populationen: Daten, Algorithmen, Software Tools
- Weiterentwicklung von mathematischen Modellen im Dialog mit Nicht-Wissenschaftler*innen (z.B. Schüler*innen)
Suggested reading
Wird in der ersten Sitzung bekannt gegeben.
-
19246021
Projekt
-
Differential Equations I
0084dB3.1-
19215601
Lecture
Cancelled
Basic Module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
Schedule: Di 12:00-14:00, Do 10:00-12:00 (Class starts on: 2025-04-15)
Location: T9/SR 005 Übungsraum (Takustr. 9)
Additional information / Pre-requisites
<p>Analysis I to III and Lineare Algebra I and II.</p>¶¶
Comments
Dynamical Systems are concerned with anything that moves. They are typically described by ordinary, functional, or partial differential equations, or, in the case of discrete time, by iterations. In this course, we will study flows and evolutions, first integrals, the existence and uniqueness of solutions, as well as ω-limit sets and Lyapunov functions. Dynamical systems have a vast range of applications, from physics and biology to economics and engineering.
Requirements: Analysis 1 & 2, Linear Algebra 1 & 2. An interest in applications is advantageous.
Suggested reading
L.C. Evans, Partial Differential Equations. Gelegentlich: W. Strauss, Partial Differential Equation. Alle Exemplare beider Texte stehen im Handapparat Ecker.
Vorausgesetztes Material zu Analysis II und III siehe z.B. Appendices in diesem Buch (vor allem Appendix C und E (Maß- und Integrationstheorie).
-
19215602
Practice seminar
Cancelled
Practice seminar for Basis module: Differential Equations I - Dynamical Systems I (Isabelle Schneider)
Schedule: Di 16:00-18:00 (Class starts on: 2025-04-22)
Location: 0.1.01 Hörsaal B (Arnimallee 14)
Comments
Am 23. April findet keine Übung statt.
-
19215601
Lecture
Cancelled
-
Discrete Mathematics I
0084dB3.2-
19214701
Lecture
Discrete Mathematics I (Ralf Borndörfer)
Schedule: Di 14:00-16:00, Do 12:00-14:00 (Class starts on: 2025-04-15)
Location: T9/SR 005 Übungsraum (Takustr. 9)
Additional information / Pre-requisites
Target group:
BMS students, Master and Bachelor students
Whiteboard:
You need access to the whiteboard in order to receive information and participate in the exercises.
Large tutorial:
Participation is recommended, but non-mandatory.
Exams:
1st exam: Thurday July 17, 14:00-16:00, room tba, i.e., in the last lecture
2nd exam: Thursday October 09, 10:00-12:00, room tba, i.e., in the last week before the lectures of the winter semester startComments
Content:
Selection from the following topics:
- Enumeration (twelvefold way, inclusion-exclusion, double counting, recursions, generating functions, inversion, Ramsey's Theorem, asymptotic counting)
- Discrete Structures (graphs, set systems, designs, posets, matroids)
- Graph Theory (trees, matchings, connectivity, planarity, colorings)
Suggested reading
- J. Matousek, J. Nesetril (2002/2007): An Invitation to Discrete Mathematics, Oxford University Press, Oxford/Diskrete Mathematik, Springer Verlag, Berlin, Heidelberg.
- L. Lovasz, J. Pelikan, K. Vesztergombi (2003): Discrete Mathemtics - Elementary and Beyond/Diskrete Mathematik, Springer Verlag, New York.
- N. Biggs (2004): Discrete Mathematics. Oxford University Press, Oxford.
- M. Aigner (2004/2007): Diskrete Mathematik, Vieweg Verlag, Wiesbaden/Discrete Mathemattics, American Mathematical Society, USA.
- D. West (2011): Introduction to Graph Theory. Pearson Education, New York.
-
19214702
Practice seminar
Practice seminar for Discrete Mathematics I (Silas Rathke)
Schedule: Di 16:00-18:00, Do 14:00-16:00 (Class starts on: 2025-04-22)
Location: A3/SR 119 (Arnimallee 3-5)
Comments
Content:
Selection from the following topics:
- Counting (basics, double counting, Pigeonhole Principle, recursions, generating functions, Inclusion-Exclusion, inversion, Polya theory)
- Discrete Structures (graphs, set systems, designs, posets, matroids)
- Graph Theory (trees, matchings, connectivity, planarity, colorings)
- Algorithms (asymptotic running time, BFS, DFS, Dijkstra, Greedy, Kruskal, Hungarian, Ford-Fulkerson)
-
19214701
Lecture
-
Topology I
0084dB3.6-
19205401
Lecture
Basic module: Topology I (Christian Haase)
Schedule: Mo 12:00-14:00, Mi 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
Location: 1.3.14 Hörsaal A (Arnimallee 14)
Comments
Course Overview This is a beginning course from the series of three courses Topology I—III:- Basic notions: topological spaces, continuous maps, connectedness, compactness, products, coproducts, quotients.
- Groups acting on topological spaces
- Gluing constructions, simplicial complexes
- Homotopies between continuous maps, degree of a map, fundamental group.
- Seifert-van Kampen Theorem.
- Covering spaces.
- Simplicial homology
- Combinatorial applications
Suggested reading
Literature:
- M. A. Armstron: Basic Topology, Springer UTM
- Allen Hatcher: Algebraic Topology, Chapter I. Also available online from the author's website
- Jirí Matoušek: Using the Borsuk-Ulam Theorem, Springer UTX
- Mark de Longueville: A Course in Topological Combinatorics, Springer UTX
- Tammo tom Dieck: Topologie, De Gruyter Lehrbuch
- Klaus Jänich: Topologie, Springer-Verlag
- Gerd Laures, Markus Szymik: Grundkurs Topologie, Spektrum Akademischer Verlag
- James R. Munkres: Topology, Prentice Hall
-
19205402
Practice seminar
Exercise for Basic Module: Topology I (Sofia Garzón Mora)
Schedule: Mo 16:00-18:00 (Class starts on: 2025-04-28)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
-
19205401
Lecture
-
Statistics I for Students of Life Sciences
0260cA2.5-
60100001
Lecture
Statistics I for bioinformatics (Konrad Neumann)
Schedule: Do 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-17)
Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Additional information / Pre-requisites
Comments
Content:
see German desciption
-
60100002
Practice seminar
Practice seminar for Statistics I for bioinformatics (Konrad Neumann)
Schedule: Mi 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-04-16)
Location: A7/SR 031 (Arnimallee 7)
-
60100001
Lecture
-
Molecular Biology and Biochemistry I
0260cA3.3-
21601a
Lecture
Biochemistry I - Fundamentals of Biochemistry (Helge Ewers, Florian Heyd, Markus Wahl)
Schedule: Mi 12:00 - 14:00 Uhr; Vorbesprechung Di, 15.04.25, 12:00 - 14:00 Uhr (HS Anorganik Fabeckstraße 34/36)) (Class starts on: 2025-04-15)
Location: Hs Anorganik (Fabeckstr. 34 / 36)
Information for students
Entspricht Molekularbiologie und Biochemie I für Bioinformatiker.
Comments
Qualifikationsziele:
Die Studentinnen und Studenten kennen die Entstehung und molekulare Struktur der wichtigsten zellulären Makromoleküle und Stoffklassen sowie ihren biologischen Kontext. Der Schwerpunkt liegt auf einem chemischen Grundverständnis des molekularen Aufbaus von Biomolekülen.
Inhalte:
Chemische und zellbiologische Grundlagen, Struktur von DNA und RNA, Replikation und Transkription, Proteinbiosynthese, Regulation der Genexpression, gentechnologische Methoden, Aminosäuren und Peptide, Proteinstruktur und Proteinfaltung, Proteom, posttranslationale Modifikationen, Methoden der Proteinforschung, Enzyme, Kohlenhydrate, Lipide und Biomembranen, Einführung in den Stoffwechsel und die Stoffwechselregulation.
Prof. Dr. H. Ewers: helge.ewers@fu-berlin.de
Prof. Dr. F. Heyd: florian.heyd@fu-berlin.de
Prof. Dr. M. Wahl: mwahl@zedat.fu-berlin.de
-
21601b
Practice seminar
Tutorial for Biochemistry I - Fundamentals of Biochemistry (Helge Ewers, Florian Heyd, Markus Wahl)
Schedule: Di/Mi 22.4.25-17.7.25 (s. Lektionen, LV-Details) (Class starts on: 2025-04-22)
Location: Ort nach Ansage je nach Übungsgruppe
Additional information / Pre-requisites
Die Übungen finden n.V. in kleineren Gruppen i.d.R. dienstags von 12:00 - 14:00 Uhr bzw. mittwochs von 10:00 - 12:00 Uhr Uhr statt. Die Verteilung findet im Rahmen der Vorbesprechung (s. 21601a) statt.
Comments
Qualifikationsziele: Die Studentinnen und Studenten kennen die Entstehung und molekulare Struktur der wichtigsten zellulären Makromoleküle und Stoffklassen sowie ihren biologischen Kontext. Der Schwerpunkt liegt auf einem chemischen Grundverständnis des molekularen Aufbaus von Biomolekülen. Inhalte: Chemische und zellbiologische Grundlagen, Struktur von DNA und RNA, Replikation und Transkription, Proteinbiosynthese, Regulation der Genexpression, gentechnologische Methoden, Aminosäuren und Peptide, Proteinstruktur und Proteinfaltung, Proteom, posttranslationale Modifikationen, Methoden der Proteinforschung, Enzyme, Kohlenhydrate, Lipide und Biomembranen, Einführung in den Stoffwechsel und die Stoffwechselregulation. Prof. Dr. H. Ewers: helge.ewers@fu-berlin.de Prof. Dr. F. Heyd: florian.heyd@fu-berlin.de Prof. Dr. M. Wahl: mwahl@zedat.fu-berlin.de
-
21601a
Lecture
-
Molecular Biology and Biochemistry III
0260cA3.5-
21699a
Lecture
Molecular Biology and Biochemistry III (Sutapa Chakrabarti, Sigmar Stricker, Holger Sieg)
Schedule: erster Termin: Fr. 25.04.2025, 10:15 - 11:45 (Class starts on: 2025-04-25)
Location: Hörsaal Thielallee 67
Information for students
Vorlesung für Studierende der Bioinformatik
UN Sustainable Development Goals (SDGs): 3, <a
Additional information / Pre-requisites
Qualification goals: The basic understanding acquired in Molecular Biology and Biochemistry II is placed in the context of complex biological systems. These are: Understanding of receptor-mediated signal transduction and the regulation of cell cycle and cell death. Understanding the molecular biological and cell biological properties of metastatic tumor cells Understanding the interactions of pathogens, host cells and the immune system Understanding of the principles of DNA medicine Contents: Growth factors, receptors and signal transduction for the regulation of cell cycle and cell death Fundamentals of immunology: innate, acquired immune defense Antigen-presenting cells, effector cells PAMP and DAMP concepts of antigen processing in infection and tumor control DNA medicine and gene therapy
-
21699b
Practice seminar
Tutorial - Molecular Biology and Biochemistry III (Sutapa Chakrabarti, Sigmar Stricker, Holger Sieg)
Schedule: erster Termin: Mi. 30.04.2025, 12:15-13:45 h (Class starts on: 2025-04-30)
Location: Hörsaal Thielallee 67
Information for students
Übungen zu 21699a für Studierende der Bioinformatik
UN Sustainable Development Goals (SDGs): 3, 14, 15
Additional information / Pre-requisites
Qualifikationsziele:
Das in Molekularbiologie und Biochemie II erlangte Grundlagenverständnis wird in den Zusammenhang komplexer biologischer Systeme gestellt. Diese sind:
Verständnis der Rezeptorvermittelten Signaltransduktion und der Regulation von Zellzyklus und Zelltod.
Verständnis der molekularbiologischen und zellbiologischen Eigenschaften von metastasierenden Tumorzellen
Verständnis der Wechselwirkungen von Pathogenen, Wirtszellen und Immunsystem
Verständnis der Prinzipien der DNA-Medizin
Inhalte:
Wachstumsfaktoren, Rezeptoren und Signaltransduktion zur Regulation von Zellzyklus und Zelltod
Grundlagen der Immunologie: angeborene, erworbene Immunabwehr
Antigen-präsentierende Zellen, Effektorzellen
PAMP- und DAMP-Konzepte der Antigen-Prozessierung bei Infektion und Tumor-Bekämpfung
DNA-Medizin und GentherapieComments
Qualification goals:
The basic understanding acquired in Molecular Biology and Biochemistry II is placed in the context of complex biological systems. These are:
Understanding of receptor-mediated signal transduction and the regulation of cell cycle and cell death.
Understanding the molecular biological and cell biological properties of metastatic tumor cells
Understanding the interactions of pathogens, host cells and the immune system
Understanding of the principles of DNA medicine
Contents:
Growth factors, receptors and signal transduction for the regulation of cell cycle and cell death
Fundamentals of immunology: innate, acquired immune defense
Antigen-presenting cells, effector cells
PAMP and DAMP concepts of antigen processing in infection and tumor control
DNA medicine and gene therapy
-
21699a
Lecture
-
Medical Physiology
0260cA3.7-
60100201
Lecture
Medical Physiology (Mathias Steinach)
Schedule: -
Location: keine Angabe
Comments
See German text version.
-
60100211
Seminar
Seminar for Medical Physiology (Mathias Steinach)
Schedule: -
Location: keine Angabe
Comments
https://physiologie-ccm.charite.de/studium_lehre_am_institut/bioinformatik/
-
60100230
Internship
Practical course for Medical Physiology (Mathias Steinach)
Schedule: -
Location: keine Angabe
Comments
https://physiologie-ccm.charite.de/studium_lehre_am_institut/bioinformatik/
-
60100201
Lecture
-
-
Object-Oriented Programming for Students with Programming Skills 0086cA1.2
-
Object-Oriented Programming for Students with No Programming Skills 0086cA1.3
-
Non-sequential and Distributed Programming 0086cA1.5
-
Impacts of Computer Science 0086cA3.1
-
Fundamentals of Theoretical Computer Science 0086cA4.1
-
Logic and Discrete Mathematics 0086cA5.1
-
Analysis for Computer Scientists 0086cA5.3
-
Fundamentals of Computer Systems 0086cB1.1
-
Research Lab 0086cB1.2
-
Introduction to Computer Science Didactics 0086cB1.3
-
Image Processing 0089cA1.1
-
Medical Image Processing 0089cA1.10
-
Model-driven Software Development 0089cA1.11
-
Pattern Recognition 0089cA1.12
-
Network-Based Information Systems 0089cA1.13
-
Computer Security 0089cA1.16
-
Semantic Business Process Management 0089cA1.17
-
Software Processes 0089cA1.18
-
Compiler Construction 0089cA1.19
-
Computer Graphics 0089cA1.2
-
Distributed Systems 0089cA1.20
-
XML Technology 0089cA1.21
-
Practices in Professional Software Development 0089cA1.22
-
Advanced Topics in Data Management 0089cA1.29
-
Computer Vision 0089cA1.3
-
Database Technology 0089cA1.4
-
Fundamentals of Software Testing 0089cA1.7
-
Artificial Intelligence 0089cA1.9
-
Advanced Algorithms 0089cA2.1
-
Model Checking 0089cA2.2
-
Cryptography and Security in Distributed Systems 0089cA2.8
-
Semantics of Programming Languages 0089cA2.9
-
Operating Systems 0089cA3.1
-
Selected Topics in Technical Computer Science 0089cA3.12
-
Telematics 0089cA3.5
-
Analysis III 0084dA1.3
-
Computer-Oriented Mathematics I 0084dA1.6
-
Probability and Statistics I 0084dA1.8
-
Higher Analysis 0084dB2.1
-
Current Topics in Mathematics 0084dB2.10
-
Special topics in Pure Mathematics 0084dB2.12
-
Special topics in Applied Mathematics 0084dB2.13
-
Functional Analysis 0084dB2.2
-
Probability and Statistics II 0084dB2.4
-
Algebra and Number Theroy 0084dB2.5
-
Elementary Geometry 0084dB2.6
-
Algebra I 0084dB3.3
-
Numerical Mathematics II 0084dB3.4
-
Differential Geometry I 0084dB3.5
-
Advanced and Applied Algorithms 0084dB3.7
-
Visualization 0084dB3.8.
-
Algorithmic Bioinformatics 0260cA1.5
-
Statistics II for Students of Life Sciences 0260cA2.6
-
General Chemistry 0260cA3.1
-
Molecular Biology and Biochemistry II 0260cA3.4
-
Genetics and Genome Research 0260cA3.6
-
Neurobiology 0260cA3.8
-
Applied Modules: All Other Subjects 0086cC3.1
-
Applied Modules: All Other Subjects 0086cC3.2
-
Applied Modules: All Other Subjects 0086cC3.3
-