WiSe 25/26  
Mathematics and...  
Gesamtes Lehran...  
Course

Mathematics

Gesamtes Lehrangebot der Mathematik

E17o
  • Gesamtes Lehrangebot der Mathematik

    E17oA1.1
    • 19200170 Begrüßungs- und Abschlussveranstaltung
      Introductory presentation for first-semester students in Mathematics (Marita Thomas)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-10-13)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Additional information / Pre-requisites

      Target group:
      Newly enrolled in Mathematics (first semester)

      Comments

      Am Montag, den 14.10.2024, ab 10:15 Uhr findet eine Begrüßungs- und Einführungsveranstaltung für Studienanfänger*innen der Mathematik statt.

      Die Veranstaltung soll den Neuimmatrikulierten einen Überblick über den Aufbau in den verschiedenen Studiengängen und Hinweise für eine effiziente Anlage des Studiums geben. Einige Hochschullehrer des Fachbereichs, darunter die Studiengangsverantwortlichen und die Dozenten der Anfängervorlesungen werden an der Veranstaltung teilnehmen.

      Anschließend übernehmen die studentischen Mentor*innen der Mathematik, die den Studienanfänger*innen mit Rat und Tat zur Seite stehen.

      Weitere Informationen

    • 19200501 Lecture
      Computerorientated Mathematics I (5 LP) (Claudia Schillings)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-17)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      Contents:
      Computers play an important role in (almost) all situations in life today. Computer-oriented mathematics provides basic knowledge in dealing with computers for solving mathematical problems and an introduction to algorithmic thinking. At the same time, typical mathematical software such as Matlab and Mathematica will be introduced. The motivation for the questions under consideration is provided by simple application examples from the aforementioned areas. The content of the first part includes fundamental terms of numerical calculation: number representation and rounding errors, condition, efficiency and stability.

      Homepage: All current information on lectures and lectures

      Suggested reading

      Literatur: R. Kornhuber, C. Schuette, A. Fest: Mit Zahlen Rechnen (Skript zur Vorlesung)

    • 19200502 Practice seminar
      Practice seminar for Computerorientated Mathematics I (5 LP) (N.N.)
      Schedule: Mo 12:00-14:00, Mo 14:00-16:00, Di 08:00-10:00, Di 16:00-18:00, Mi 10:00-12:00, Do 14:00-16:00, Fr 08:00-10:00 (Class starts on: 2025-10-13)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19200541 Zentralübung
      Large tutorial for Computerorientated Mathematics I (5 LP) (Claudia Schillings)
      Schedule: Fr 14:00-16:00 (Class starts on: 2025-10-10)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19200701 Lecture
      Algebra and Theory of Numbers (Alexander Schmitt)
      Schedule: Mo 08:00-10:00, Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      Subject matter:
      Selected topics from:

          Divisibility into rings (especially Z- and polynomial rings); residual classes and congruencies; modules and ideals
          Euclidean, principal ideal and factorial rings
          The quadratic law of reciprocity
          Primality tests and cryptography
          The structure of abel groups (or modules about main ideal rings)
          Symmetric function set
          Body extensions, Galois correspondence; constructions with compasses and rulers
          Non-Label groups (set of Lagrange, normal dividers, dissolvability, sylow groups)

    • 19200702 Practice seminar
      Practice seminar for Algebra and Theory of Numbers (Alexander Schmitt)
      Schedule: Mi 14:00-16:00, Do 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
    • 19200741 Zentralübung
      Large tutorial for Algebra and Theory of Numbers (Jan Sevenster)
      Schedule: Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: A3/SR 120 (Arnimallee 3-5)
    • 19201301 Lecture
      Analysis III (Marita Thomas)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Comments

      Contents

      The lecture Analysis III is the final lecture of the cycle Analysis I-III.

      • ODEs
      • Differentiation and integration in Rn,
      • extremes with and without constraints,
      • integration on surfaces,
      • the integrals of Gauss and Stokes and much more are discussed.

      These basics are indispensable for a successful study of mathematics.

      Suggested reading

      Literatur

      • H. Amann, J. Escher: Analysis 2, Birkhäuser Verlag, 2008.
      • H. Amann, J. Escher: Analysis 3, Birkhäuser Verlag, 2008.
      • O. Forster: Analysis 2, Springer Verlag, 2012.
      • O. Forster: Analysis 3, Vieweg+Teubner, 2012.
      • H. Heuser: Lehrbuch der Analysis 2, Vieweg+Teubner, 2012.
      • S. Hildebrandt: Analysis 2, Springer Verlag, 2003.
      • J. Jost: Postmodern Analysis, Springer Verlag, 2008.
      • K. Königsberger: Analysis 2, Springer Verlag, 2004.
      • W. Rudin: Principles of Mathematical Analysis, International Series in Pure & Applied Mathematics, 1976.

      und für geschichtlich Interessierte:

      • O. Becker: Grundlagen der Mathematik, Verlag Karl Alber, Freiburg, 1964.
      • E. Hairer, G. Wanner: Analysis by its History, Springer, 2000.
      • V.J. Katz: A History of Mathematics, Harper Collins, New York, 1993.

    • 19201302 Practice seminar
      Practice seminar for Analysis III (Marita Thomas, Sven Tornquist)
      Schedule: Di 14:00-16:00, Mi 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
    • 19201401 Lecture
      Linear Algebra I (Georg Loho)
      Schedule: Mo 08:00-10:00, Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Content:

      • Basic terms/concepts: sets, maps, equivalence relations, groups, rings,
      • fields
      • Linear equation systems: solvability criteria, Gauss algorithm
      • Vector spaces: linear independence, generating systems and bases, dimension,
      • subspaces, quotient spaces, cross products in R3
      • Linear maps: image and rank, relationship to matrices, behaviour under
      • change of basis
      • Dual vector spaces: multilinear forms, alternating and symmetric bilinear
      • forms, relationship to matices, change of basis
      • Determinants: Cramer's rule, Eigenvalues and Eigenvectors


      Prerequisites:

      Participation in the preparatory course (Brückenkurs) is highly recommended.

       

      Suggested reading

      • Siegfried Bosch, Lineare Algebra, 4. Auflage, Springer-Verlag, 2008;
      • Gerd Fischer, Lernbuch Lineare Algebra und Analytische Geometrie, Springer-Verlag, 2017;
      • Bartel Leendert van der Waerden, Algebra Volume I, 9th Edition, Springer 1993;

      Zu den Grundlagen

      • Kevin Houston, Wie man mathematisch denkt: Eine Einführung in die mathematische Arbeitstechnik für Studienanfänger, Spektrum Akademischer Verlag, 2012

    • 19201402 Practice seminar
      Practice seminar for Linear Algebra I (Georg Loho, Jan-Hendrik de Wiljes)
      Schedule: Mo 10:00-12:00, Mo 16:00-18:00, Mi 10:00-12:00, Do 08:00-10:00, Do 12:00-14:00, Fr 10:00-12:00 (Class starts on: 2025-10-15)
      Location: Mo A3/SR 115 (Arnimallee 3-5), Mo A6/SR 009 Seminarraum (Arnimallee 6), Mi A6/SR 009 Seminarraum (Arnimallee 6), Do A6/SR 007/008 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6), Fr A6/SR 031 Seminarraum (Arnimallee 6)
    • 19201441 Zentralübung
      Large tutorial for Linear Algebra I (Jan-Hendrik de Wiljes, Alexandra Rezmer)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
    • 19201510 Proseminar
      Undergraduate Seminar: Linar Algebra (Alexander Schmitt)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-10-13)
      Location: A3/SR 119 (Arnimallee 3-5)

      Comments


       

    • 19201901 Lecture
      Functional Analysis (Dirk Werner)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Content:
      Functional analysis is the branch of mathematics dealing with the study of normed (or general topological) vector spaces and continuous mappings between them. Thus, analysis, topology and algebra are linked.
      The course deals with Banach and Hilbert spaces, linear operators and functionals as well as spectral theory of compact operators.

      Target group: Students from the 3rd/4th semester on.

      Requirements: Good command of the material of the courses Analysis I/II and Linear Algebra I/II.

      Suggested reading

      Literatur:

      • Dirk Werner: Funktionalanalysis, 8. Auflage, Springer-Verlag 2018

    • 19201902 Practice seminar
      Tutorial: Functional Analysis (Dirk Werner)
      Schedule: Do 12:00-14:00 (Class starts on: 2025-10-16)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Comments

      Inhalt:
      Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von normierten (oder allgemeiner topologischen) Vektorräumen und stetigen Abbildungen zwischen ihnen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft.
      Die Vorlesung behandelt Banach- und Hilberträume, lineare Operatoren und Funktionale sowie Spektraltheorie kompakter Operatoren.

      Zielgruppe: Studierende vom 4. Semester an.

      Voraussetzungen: Sicheres Beherrschen des Stoffs der Vorlesungen Analysis I/II und Lineare Algebra I/II.

      Literatur:

       

      • Dirk Werner: Funktionalanalysis, 6. Auflage, Springer-Verlag 2007, ISBN 978-3-540-72533-6
      • Hans Wilhelm Alt: Lineare Funktionalanalysis : eine anwendungsorientierte Einführung. 5. Auflage. Springer-Verlag, 2006, ISBN 3-540-34186-2
      • Harro Heuser: Funktionalanalysis: Theorie und Anwendung. 3. Auflage. Teubner-Verlag, 1992, ISBN 3-519-22206-X

       

    • 19202001 Lecture
      Discrete Geometrie I (Christian Haase)
      Schedule: Di 10:00-12:00, Mi 12:00-14:00 (Class starts on: 2025-10-14)
      Location: A3/SR 120 (Arnimallee 3-5)

      Additional information / Pre-requisites

      Solid background in linear algebra. Knowledge in combinatorics and geometry is advantageous.

      Comments

      Physical presence in the exercises on Wednesdays is mandatory.

      This is the first in a series of three courses on discrete geometry. The aim of the course is a skillful handling of discrete geometric structures including analysis and proof techniques. The material will be a selection of the following topics:
      Basic structures in discrete geometry

      • polyhedra and polyhedral complexes
      • configurations of points, hyperplanes, subspaces
      • Subdivisions and triangulations (including Delaunay and Voronoi)
      • Polytope theory
      • Representations and the theorem of Minkowski-Weyl
      • polarity, simple/simplicial polytopes, shellability
      • shellability, face lattices, f-vectors, Euler- and Dehn-Sommerville
      • graphs, diameters, Hirsch (ex-)conjecture
      • Geometry of linear programming
      • linear programs, simplex algorithm, LP-duality
      • Combinatorial geometry / Geometric combinatorics
      • Arrangements of points and lines, Sylvester-Gallai, Erdos-Szekeres
      • Arrangements, zonotopes, zonotopal tilings, oriented matroids
      • Examples, examples, examples
      • regular polytopes, centrally symmetric polytopes
      • extremal polytopes, cyclic/neighborly polytopes, stacked polytopes
      • combinatorial optimization and 0/1-polytopes

       

      For students with an interest in discrete mathematics and geometry, this is the starting point to specialize in discrete geometry. The topics addressed in the course supplement and deepen the understanding for discrete-geometric structures appearing in differential geometry, topology, combinatorics, and algebraic geometry.

       

       

       

       

       

       

       

       

       

      Suggested reading

      • G.M. Ziegler "Lectures in Polytopes"
      • J. Matousek "Lectures on Discrete Geometry"
      • Further literature will be announced in class.

    • 19202002 Practice seminar
      Practice seminar for Discrete Geometrie I (Sofia Garzón Mora, Christian Haase)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19202101 Lecture
      Basic Module: Numeric II (Robert Gruhlke)
      Schedule: Mo 12:00-14:00, Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.

      Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS

      Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)

    • 19202102 Practice seminar
      Practice seminar for Basic Module: Numeric II (André-Alexander Zepernick)
      Schedule: Mi 10:00-12:00, Fr 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
    • 19202301 Lecture
      Computational Sciences (Sebastian Matera, Luca Donati)
      Schedule: Mo 12:00-16:00 (Class starts on: 2025-10-13)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)

      Comments

      The main focus of the module is on learning working methods. 1-3 problems of interdisciplinary relevance are selected and scientific theory, algorithmics, numerics and efficiency are rigorously practiced on these examples. In the computer exercises, students work in teams to develop, test and optimize implementations of the problems. Examples of suitable problems are e.g.:

      • Wave phenomena and spectral analysis methods: Waves and oscillations in physics, the Fourier and Laplace transforms, discretization, DFT, FFT, implementation, stability analysis, duration analysis, code optimization, hardware acceleration

      • Gravitation, electrostatics and computational procedures: gravitation problems and Coulomb‘s law, periodic systems and convergence, Ewald summation, error analysis, Particle Mesh Ewald, efficient implementation, hardware acceleration

      • Thermal conductivity equation, Poisson’s equation and solution methods: thermal conductivity equation, Poisson’s equation, parabolic PDEs, PDEs, analytical solutions for special cases, domain decomposition / finite element approximation, solution using algebraic methods, implementation, convergence analysis, code optimization, hardware acceleration

      • Data analysis and dimensional reduction: examples of correlated high-dimensional signals, Rayleigh quotient and optimality principle, eigenvalue problem, singular value decomposition and usual solution methods, Nyström approximation and sparse sampling, efficient implementation

    • 19202312 Project Seminar
      Project Seminar for Computational Sciences (Sebastian Matera, Luca Donati)
      Schedule: Mi 14:00-18:00 (Class starts on: 2025-10-15)
      Location: T9/K40 Multimediaraum (Takustr. 9)
    • 19202601 Lecture
      Differential Geometry I (Konrad Polthier)
      Schedule: Mo 10:00-12:00, Mi 10:00-12:00 (Class starts on: 2025-10-15)
      Location: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)

      Additional information / Pre-requisites

      For further information, see Lecture Homepage.

      Comments

      Topics of the lecture will be:

      • curves and surfaces in Euclidean space,
      • metrics and (Riemannian) manifolds,
      • surface tension, notions of curvature,
      • vector fields, tensors, covariant derivative
      • geodesic curves, exponential map,
      • Gauß-Bonnet theorem, topology,
      • connection to discrete differential geometry.

      This course is a BMS course and will be held in English on request.

      Prerequisits:

      Analysis I, II, III and Linear Algebra I, II

       

       

      Suggested reading

      Literature

      • W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
      • M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
      • J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
      • C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001

    • 19202602 Practice seminar
      Practice seminar for Differential Geometry I (Tillmann Kleiner, Konrad Polthier)
      Schedule: Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19202801 Lecture
      Analysis I (Elena Mäder-Baumdicker)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      Content:
      This is the first part of a three semester introduction into the basic mathematical field of Analysis. Differential and integral calculus in a real variable will be covered. Topics:

      1. fundamentals, elementary logic, ordered pairs, relations, functions, domain and range of a function, inverse functions (injectivity, surjectivity)
      2. numbers, induction, calculations in R, C
      3. arrangement of R, maximum and minimum, supremum and infimum of real sets, supremum / infimum completeness of R, absolute value of a real number, Q is dense in R
      4. sequences and series, limits, cauchy sequences, convergence criteria, series and basic principles of convergence
      5. topological aspects of R, open, closed, and compact real sets
      6. sequences of functions, series of functions, power series
      7. properties of functions, boundedness, monotony, convexity
      8. continuity, limits and continuity of functions, uniform continuity, intermediate value theorems, continuity and compactness
      9. differentiability, concept of the derivative, differentiation rules, mean value theorem, local and global extrema, curvature, monotony, convexity
      10. elementary functions, rational functions, root functions, exponential functions, angular functions, hyperbolic functions, real logarithm, inverse trigonometric functions, curve sketching
      11. beginnings of integral calculus

       

      Suggested reading

      Literature:

      • Bröcker, Theodor: Analysis 1, Spektrum der Wissenschaft-Verlag.
      • Forster, Otto: Analysis 1, Vieweg-Verlag.
      • Spivak, Michael: Calculus, 4th Edition.

      Viele Analysis Bücher sind auch über die Fachbibliothek der FU Berlin elektronisch verfügbar.

      Bei Schwierigkeiten mit den Grundbegriffen Menge, Abbildung etc. ist die folgende Ausarbeitung empfehlenswert:

    • 19202802 Practice seminar
      Tutorial: Analysis I (Elena Mäder-Baumdicker)
      Schedule: Mo 14:00-22:00, Mi 14:00-16:00, Fr 08:00-10:00, Fr 10:00-12:00 (Class starts on: 2025-10-15)
      Location: Mi A3/SR 119 (Arnimallee 3-5), Fr A3/SR 119 (Arnimallee 3-5), Fr A6/SR 025/026 Seminarraum (Arnimallee 6)
    • 19202841 Zentralübung
      Large tutorial for Analysis I (Felix Höfling)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-31)
      Location: 1.1.26 Seminarraum E1 (Arnimallee 14)
    • 19203701 Lecture
      Linear Algebra for Physicists (Alfonso Caiazzo)
      Schedule: Di 12:00-14:00, Do 12:00-14:00 (Class starts on: 2025-10-14)
      Location: Di A6/SR 025/026 Seminarraum (Arnimallee 6), Do 0.1.01 Hörsaal B (Arnimallee 14)

      Additional information / Pre-requisites

      Diese Vorlesung entspricht weitgehend der Mathematik II aus der alten Sudienordnung

      Comments

      Subject matter:
      Sets, real and complex numbers, complete induction, matrices and linear systems of equations, basic determinants of vector space, linear images, representations and base transformations, eigenvalues and eigenvectors, diagonalization of matrices, scalar product, orthogonal and self-adjusted operators, Hermite operators.

      Target group:
      Students of physics, geophysics and meteorology

      Requirements:
      School mathematics

      https://lms.fu-berlin.de/

      Suggested reading

      Wird in der Vorlesung bekannt gegeben.

    • 19203702 Practice seminar
      Practice seminar for Linear Algebra for Physicists (N.N.)
      Schedule: Di 08:00-10:00, Di 14:00-16:00, Di 16:00-18:00, Do 14:00-16:00 (Class starts on: 2025-10-16)
      Location: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.48 Seminarraum T3 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14)
    • 19203801 Lecture
      Analysis 2 (Mathematics for Physicists 3) (Rupert Klein)
      Schedule: Di 12:00-14:00, Do 12:00-14:00 (Class starts on: 2025-10-14)
      Location: T9/SR 006 Seminarraum (Takustr. 9)

      Comments

      Content:

      Function sequences, interchangeability of boundary processes, sets in Rn, functions of several variables, partial derivatives and differentiability, implicit functions, extreme values and Lagrange multipliers, Taylor series in Rn, curve, area and volume integrals, gradient, divergence, rotation, integrals of Gaussian, Green and Stokes. Literature will be announced at the start of the semester on the course website.

       

    • 19203802 Practice seminar
      Practice seminar for Analysis 2 (Mathematics for Physicists 3) (Luigi Delle Site)
      Schedule: Mi 10:00-12:00, Do 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A3/SR 119 (Arnimallee 3-5)
    • 19205901 Lecture
      Advanced Module: Discrete Geometry III (Ansgar Freyer)
      Schedule: Di 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)

      Additional information / Pre-requisites

      The target audience are students with a solid background in discrete geometry and/or convex geometry (en par with Discrete Geometry I & II). The topic of this course is a state-of-art of advanced topics in discrete geometry that find applications and incarnations in differential geometry, topology, combinatorics, and algebraic geometry.

      Requirements: Preferably Discrete Geometry I and II.

      Comments

      This is the third in a series of three courses on discrete geometry. This advanced course will cover a selection of the following topics (depending on the interests of the audience):   1. Oriented Matroids along the lines of the book Oriented Matroids by Björner, Las Vergnas, Sturmfels, White, and Ziegler; and/or   2. Triangulations along the lines of the book Triangulations by de Loera, Rambau, and Santos; and/or   3. Discriminants and tropical geometry along the lines of the book Discriminants, Resultants, and multidimensional determinants by Gelfand, Kapranov, and Zelevinsky; and/or   4. Combinatorics and commutative algebra along the lines of the book Combinatorics and commutative algebra by Stanley.

      Suggested reading

      Will be announced in class.

    • 19205902 Practice seminar
      Practice seminar for Advanced Module: Discrete Geometry III (Ansgar Freyer)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A3/SR 120 (Arnimallee 3-5)
    • 19206201 Lecture
      Basic Module: Topology II (Pavle Blagojevic)
      Schedule: Di 14:00-16:00, Do 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Content: Homology, cohomology and applications, CW-complexes, basic notions of homotopy theory

      Suggested reading

      Literatur

      • Hatcher, Allen: Algebraic Topology; Cambridge University Press.
      • http://www.math.cornell.edu/~hatcher/AT/ATpage.html
      • Lück, Wolfgang: Algebraische Topologie, Homologie und Mannigfaltigkeiten; Vieweg.

    • 19206202 Practice seminar
      Ex.: Basic Module: Topology II (Katarina Krivokuca)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)
    • 19206401 Lecture
      Numerics IV: Coevolution of Complex Systems: Interactions Between Social, Health and Climate Dynamics (Christof Schütte)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: keine Angabe

      Comments

      This lecture explores how complex systems evolve together, with examples as the interplay between social opinion dynamics and infectious disease spread, or the feedback loops between climate change and economic behavior. Using established models for systems from the respective fields, we will examine how coupling between the systems can lead to unexpected outcomes or emergent behavior, and discuss related policy challenges for managing real-world crises.

    • 19206402 Practice seminar
      Practice seminar for Advanced Module: Numerics IV (Christof Schütte)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: keine Angabe
    • 19207101 Lecture
      Partial differential equations with multiple scales: Theory and computation (Juliane Rosemeier)
      Schedule: Mi 10:00-12:00 (Class starts on: 2025-10-15)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      Content:
      This course considers the fundamental equation of fluid dynamics - the incompressible Navier-Stokes equations. These partial differential equations are nonlinear, not symmetric, and they are a coupled systems of two equations. The dominating term is generally the convective term. All these features lead to difficulties in the numerical simulation of the Navier-Stokes equations. The course will start with a derivation of these equations and an overview about results from the analysis will be given. The difficulties in the numerical simulation of the Navier-Stokes equations can be studied separately at simpler equations. This course will consider only stationary equations. The time-dependent equations, in particular turbulent flows, will be the topic of the next semester.

      Requirements:
      Basic knowledge on numerical methods for partial differential equations, in particular finite element methods (Numerical Mathematics 3)

    • 19207102 Practice seminar
      Tutorials for Partial differential equations with multiple scales: Theory and computation (Juliane Rosemeier)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)
    • 19207219 Seminar with practice
      Formal Proof Vetification (Christoph Spiegel, Silas Rathke)
      Schedule: -
      Location: keine Angabe

      Comments

      This two-week block course at Freie Universität Berlin offers a hands-on introduction to formal proof verification with the Lean theorem prover. Lectures take place at the Zuse Institute Berlin (ZIB); tutorial rooms at FU will be assigned once enrollment is known. The course is open to all (including guest auditors), with tutorial priority for FU students taking it toward ABV requirements. Please bring a laptop for in-class exercises. A solid grasp of Analysis I and Linear Algebra I is expected; no programming background is required, though technical curiosity helps. The teaching language is English (German contributions are welcome). Full details and materials—including modules on logic, set theory, natural numbers, the infinitude of primes, and basic graph theory—are available on the course GitHub.

      For Master’s credit, the course adds differentiated exercises and advanced assessment. Exercises are tiered into foundational tasks (with human-readable proof templates), Master’s-level problems, and optional stretch challenges, with guidance and informal progress checks during sessions. The final assessment is a written exam that tests both conceptual understanding and practical Lean skills. In addition, Master’s students complete a Lean formalization project (individually or in pairs) and present it in an oral-exam-style session one to two weeks after the block course; M.Sc. grades are based on both the exam and the project.

    • 19208111 Seminar
      Masterseminar Stochastics "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes)
      Schedule: Do 16:00-18:00 (Class starts on: 2025-10-16)
      Location: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)

      Additional information / Pre-requisites

      Prerequisites: Stochastics I and II. Desirable: Stochastics III.
      Target Group: BMS Students, Master students of Mathematics and advanced Bachelor students of Mathematics.

      Comments

      Content: The seminar covers advanced topics of stochastics.

      Detailed Information can be found on the Homepage of the seminar.

      Reinforcement learning lies at the core of many state-of-the-art artificial intelligence algorithms, enabling agents to solve complex optimal control tasks in robotics, finance, physical AI, drug discovery, computer games and many other applications.
      This seminar offers a rigorous treatment of reinforcement learning, focusing on the mathematical principles that make reinforcement learning algorithms work. We will develop a mathematically sound understanding of Markov decision processes, value function based methods and their connections to stochastic optimal control, policy gradient methods, emphasizing convergence properties of classical reinforcement learning algorithms through stochastic approximation and stochastic gradient descent. We will also explore continuous time reinforcement learning in the framework of stochastic differential equations.
      The seminar aims to provide a rigorous foundational perspective for students interested in current research related to reinforcement learning and artificial intelligence. Participants should have a strong background in mathematics specifically in probability theory.

      Suggested reading

      Literatur wird in der Vorbesprechung bekanntgegeben.

      Literature will be announced in the preliminary discussion

    • 19211601 Lecture
      Analysis II (Pavle Blagojevic)
      Schedule: Di 10:00-12:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      Content

      1. Additions to Analysis I. Non-authentic integrals
      2. Uniform convergence of function sequences. Power series. Sentence of Taylor.
      3. Elements of topology. Standardized and metric spaces. Open quantities. Convergence. Completed quantities. Consistency. Compactness
      4. Differential calculus of several variables. Partial, total and continuous differentiability. Block via the inverse function. Block of implicit functions.
      5. Iterated integrals.
      6. Ordinary differential equations. Basic terms, elementary solvable differential equations, existential and unambiguous results for systems.

      Suggested reading

      • O. Forster: Analysis 1 und 2. Vieweg/Springer.
      • Königsberger, K: Analysis 1,2, Springer.
      • E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
      • H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.

    • 19211641 Zentralübung
      Large tutorial for Analysis II (N.N.)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)
    • 19211702 Practice seminar
      Practice seminar for Linear Algebra II (Marcus Weber)
      Schedule: Di 08:00-10:00, Di 14:00-16:00, Mi 12:00-14:00, Do 16:00-18:00, Fr 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A3/019 Seminarraum (Arnimallee 3-5)
    • 19211741 Zentralübung
      Mentoring for Linear Algebra II (Marcus Weber)
      Schedule: Do 12:00-14:00 (Class starts on: 2025-10-16)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
    • 19212001 Lecture
      Numerics I (Volker John)
      Schedule: Mo 10:00-12:00, Mi 10:00-12:00 (Class starts on: 2025-10-13)
      Location: A7/SR 031 (Arnimallee 7)

      Comments

      Numerical methods for: iterative solution of nonlinear systems of equations (fixpoint and Newton methods), curve fitting, interpolation, numerical quadrature, and numerics for initial value problems and two point boundary value problems with ODEs. The course is taught in German.

      Suggested reading

      Stoer, Josef und Roland Bulirsch: Numerische Mathematik - eine Einführung, Band 1. Springer, Berlin, 2005.

      Aus dem FU-Netz auch online verfügbar.

      Es wird ein Vorlesungsskript geben.

      Link

    • 19212002 Practice seminar
      Practice seminar for Numerics I (N.N.)
      Schedule: Di 10:00-12:00, Di 12:00-14:00 (Class starts on: 2025-10-14)
      Location: A3/SR 120 (Arnimallee 3-5)
    • 19212901 Lecture
      Stochastics II (Felix Höfling)
      Schedule: Di 12:00-14:00, Do 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Additional information / Pre-requisites

      Prerequisite: Stochastics I  and  Analysis I — III.

      Comments

      Contents:

      • Basics: conditional expectation, characteristic function, convergence types, uniform integrability;
      • Construction of stochastic processes and examples: Gaussian processes, Lévy processes, Brownian motion;
      • martingales in discrete time: convergence, stopping theorems, inequalities;
      • Markov chains in discrete and continuous time: recurrence and transience, invariant measures.

      Suggested reading

      • Klenke: Wahrscheinlichkeitstheorie
      • Durrett: Probability. Theory and Examples.

      Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
      Further literature will be given during the lecture.

    • 19212902 Practice seminar
      Practice seminar for Stochastics II (Felix Höfling)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)

      Comments

      Inhalt

       

       

      • This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
        More precisely, the course will cover the following aspects of probability theory:
      • Measure theory and the Lebesgue integral
      • Convergence of random variables and 0-1 laws
      • Generating functions: branching processes and characteristic functions
      • Markov chains
      • Introduction to martingales

       

       

    • 19214010 Proseminar
      Undergraduate Seminar "Magic Tricks with Mathematical Background" (Ehrhard Behrends)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-10-20)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Magic tricks with a mathematical background will be analyzed.

      Suggested reading

      Literatur: Mein 2017 bei Springer Spektrum erschienenes Buch "Zaubern und Mathematik" sowie einige Originalarbeiten zum Thema.

    • 19214210 Proseminar
      Proseminar "Mathematik für die Öffentlichkeit“ (Anna Maria Hartkopf)
      Schedule: Termine siehe LV-Details (Class starts on: 2026-03-25)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)
    • 19214411 Seminar
      Research Module: Differential Geometrie (Konrad Polthier, Tillmann Kleiner)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)

      Comments

      In this seminar, differential geometric topics will be independently developed based on current research and presented in the form of a talk.

      Particular emphasis is placed on the concrete implementation of differential geometric concepts in application scenarios and the questions of discretization and implementation.

      Learning objectives are a deeper understanding of differential geometry concepts, as well as problems and solution strategies in their practical use.

      Previous knowledge: Differential geometry I

    • 19217311 Seminar
      PhD Seminar "What is...?" (Holger Reich)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-17)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)

      Additional information / Pre-requisites

      The "What is ...?" seminars are usually held before the BMS Friday seminar to complement the topic of the talk.

      Audience: Anybody interested in mathematics is invited to attend the "What is ...?" seminars. This includes Bachelors, Masters, Diplom, and PhD students from any field, as well as researchers like Post-Docs.
      Requirements: The speakers assume that the audience has at least a general knowledge of graduate-level mathematics.

      Comments

      Content: The "What is ...?" seminar is a 30-minute weekly seminar that concisely introduces terms and ideas that are fundamental to certain fields of mathematics but may not be familiar in others.
      The vast mathematical landscape in Berlin welcomes mathematicians with diverse backgrounds to work side by side, yet their paths often only cross within their individual research groups. To encourage interdisciplinary cooperation and collaboration, the "What is ...?" seminar attempts to initiate contact by introducing essential vocabulary and foundational concepts of the numerous fields represented in Berlin. The casual atmosphere of the seminar invites the audience to ask many questions and the speakers to experiment with their presentation styles.
      The location of the seminar rotates among the Urania, FU, TU, and HU. On the weeks when a BMS Friday takes place, the "What is ...?" seminar topic is arranged to coincide with the Friday talk acting as an introductory talk for the BMS Friday Colloquium. For a schedule of the talks and their locations, check the website. The website is updated frequently throughout the semester.

      Talks and more detailed information can be found here
      Homepage: http://www.math.fu-berlin.de/w/Math/WhatIsSeminar

    • 19220901 Lecture
      Probability and Statistics (N.N.)
      Schedule: Di 12:00-14:00, Do 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)

      Comments

      Es werden insbesondere folgende Inhalte vermittelt.
      –  Diskrete Wahrscheinlichkeitsräume und -maße
      –  Diskrete und stetige Zufallsvariablen und ihre Verteilungen, wichtige Beispiele
      –  Erwartungswert, (Ko-)Varianz, Korrelation
      –  Bedingte Wahrscheinlichkeit, Unabhängigkeit
      –  Schwaches Gesetz der großen Zahl
      –  Zentraler Grenzwertsatz
      –  Datenanalyse und deskriptive Statistik: Histogramme; empirische Verteilung; Kenngrößen von Stichprobenver-teilungen; Beispiele irreführender deskriptiver Statistiken; lineare Regression
      –  Elementare Begriffe und Techniken des Testens und Schätzens: Maximum-Likelihood-Prinzip; Konfidenzinter-valle; Hypothesentests; Fehler erster und zweiter Art 

       

      Suggested reading

      E. Behrends: Elementary Stochastics, Springer, 2013
          H.-O. Georgii: Stochastics: Introduction to Probability Theory and Statistics, De Gruyter, 2007
          U. Krengel: Introduction to probability theory and statistics, Vieweg, 2005
          D. Meintrup, S. Schäffler, Stochastics: Theory and Applications, Springer, 2005.
          Most of the books listed below are available online at the UB. For this purpose, there is an extensive hand apparatus for stochastics in the mathematic library.

    • 19220902 Practice seminar
      Practice seminar for Probability and Statistics (N.N.)
      Schedule: -
      Location: keine Angabe
    • 19220941 Zentralübung
      Practice seminar for Probability and Statistics (N.N.)
      Schedule: Di 10:00-12:00, Di 14:00-16:00, Mi 10:00-12:00, Fr 08:00-10:00 (Class starts on: 2025-10-14)
      Location: A3/SR 119 (Arnimallee 3-5)
    • 19222301 Lecture
      Advanced Module: Algebra III (Holger Reich)
      Schedule: Mo 12:00-14:00 (Class starts on: 2025-10-20)
      Location: A3/SR 120 (Arnimallee 3-5)

      Comments

      Course contents: a selection of the following topics

      • properties of morphisms (proper, projective, smooth)
      • divisors
      • (quasi-)coherent sheaves
      • cohomology
      • Hilbert functions

      further properties of morphisms (proper, integral, regular, smooth, étale, ...)

      • Grothendieck topologies
      • cohomology (Cech, étale, ...)

      Suggested reading

      For example: Introduction to Schemes, Geir Ellingsrud and John Christian Otten

    • 19222302 Practice seminar
      Practice seminar for Advanced Module: Algebra III (Holger Reich)
      Schedule: Mi 10:00-12:00 (Class starts on: 2025-10-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
    • 19223111 Seminar
      BMS Fridays (Holger Reich)
      Schedule: Fr 14:00-18:00 (Class starts on: 2025-10-17)
      Location: T9/Gr. Hörsaal (Takustr. 9)

      Comments

      The Friday colloquia of BMS represent a common meeting point for Berlin mathematics at Urania Berlin: a colloquium with broad emanation that permits an overview of large-scale connections and insights. In thematic series, the conversation is about “mathematics as a whole,” and we hope to be able to witness some breakthroughs.

      Typically, there is a BMS colloquium every other Friday afternoon in the BMS Loft at Urania during term time. BMS Friday colloquia usually start at 2:15 pm. Tea and cookies are served before each talk at 1:00 pm.

      More details: https://www.math-berlin.de/academics/bms-fridays

    • 19223811 Seminar
      Master Seminar Topology "L^2-Betti numbers" (N.N.)
      Schedule: Do 10:00-12:00 (Class starts on: 2025-10-16)
      Location: A3/SR 115 (Arnimallee 3-5)

      Additional information / Pre-requisites

      Prerequisites: Basic knowledge of topology and group theory is required.

      Comments

      The Euler characteristic of finite CW-complexes is multiplicative under finite-sheeted coverings and it is homotopy invariant. These properties can be deduced from different descriptions:
      1. As the alternating sum of the numbers of cells, which are multiplicative but not homotopy invariant.
      2. As the alternating sum of Betti numbers, which are homotopy invariant but not multiplicative. The $n$-th Betti number of $X$ is the $\mathbb{Q}$-dimension of the homology $H_n(X;\mathbb{Q})$ with rational coefficients.
      3. As the alternating sum of $L^2$-Betti numbers, which enjoy the best features from both worlds: they are multiplicative and homotopy invariant. The $n$-th $L^2$-Betti number of $X$ is the von Neumann-dimension of the homology $H_n(X; \mathcal{N}\pi_1(X))$ with suitable coefficients.

      $L^2$-Betti numbers are meaningful topological invariants, as they obstruct the structures of mapping tori and $S^1$-actions. They also have applications to group theory by considering the $L^2$-Betti numbers of classifying spaces. Moreover, $L^2$-Betti numbers are related to famous open problems, such as the Hopf and Singer conjectures on the Euler characteristic of manifolds, and the Kaplansky conjecture on zero divisors in group rings.

      Detailed Information can be found on the Homepage of the seminar.

      Suggested reading

      This seminar will be an introduction to $L^2$-Betti numbers, following mostly
      the book by Holger Kammeyer.

    • 19224301 Lecture
      Basics of Mathematics Education (Brigitte Lutz-Westphal, Benedikt Weygandt)
      Schedule: Mo 12:00-14:00 (Class starts on: 2025-10-20)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Comments

      The lecture deals with fundamental topics of mathematics education, which are taken up again and deepened in the seminars. It takes place on 8 dates as a double lesson.

    • 19224411 Seminar
      Basics of Mathematics Education 1 (N.N.)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A3/SR 119 (Arnimallee 3-5)

      Comments

      In this seminar material didactic questions, i.e. for the respective topic characteristic possibilities, difficulties and hurdles for learning are treated. This seminar is offered on several parallel dates, some of which focus on different topics. Please select one of the seminars offered.

    • 19224611 Seminar
      Basics of Mathematics Education 1 (Benedikt Weygandt)
      Schedule: Mo 10:00-12:00 (Class starts on: 2025-10-20)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar material didactic questions, i.e. for the respective topic characteristic possibilities, difficulties and hurdles for learning are treated. This seminar is offered on several parallel dates, some of which focus on different topics. Please select one of the seminars offered.

    • 19224711 Seminar
      Basics of Mathematics Education 1 (Benedikt Weygandt)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-10-20)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar material didactic questions, i.e. for the respective topic characteristic possibilities, difficulties and hurdles for learning are treated. This seminar is offered on several parallel dates, some of which focus on different topics. Please select one of the seminars offered.

    • 19225101 Lecture
      Soft Matter: Mathematical Aspects, Physical Modeling and Computer Simulation (Luigi Delle Site)
      Schedule: Mo 12:00-14:00, Di 12:00-14:00 (Class starts on: 2025-10-14)
      Location: Die Veranstaltung findet im Seminarraum der Arnimallee 9 statt.

      Additional information / Pre-requisites

      Audience: Master students of Mathematics and Physics interested in mathematical theory and computational modeling of Soft Matter Systems.

      Requirements: Basic Knowledge of statistical physics and of dynamics, computer programming

      Comments

      Program

      Polymer Physics: Structure and Dynamics

      • (a) Theoretical/analytic approaches
      • (b) Physical and chemical Modeling
      • (c) Simulation

      Biological Membranes

      • (a) Theoretical/analytic approaches
      • (b) Physical and chemical Modeling
      • (c) Simulation

      Introduction to Colloids and Liquid Crystals

      • Theory and Simulation

      Introduction to Hydrodynamic scale for large Biological Systems:

      • Examples are e.g. Cellular processes, Red Blood Cells in Capillary Flow, etc. (Theory and Simulation)

      Suggested reading

      Basic Literature:

      1. Introduction to Polymer Physics by M. Doi
      2. Soft Matter Physics by M. Doi
      3. Biomembrane Frontiers: Nanostructures, Models, and the Design of Life (Handbook of Modern Biophysics) by von Thomas Jue, Subhash H. Risbud, Marjorie L. Longo, Roland Faller (Editors)

    • 19225102 Practice seminar
      Practice seminar for Soft Matter: Mathematical Aspects, Physical Modeling and Computer Simulation (Luigi Delle Site)
      Schedule: Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: SR A9
    • 19225201 Lecture
      Professional Mathematical Knowledge for Primary School Teachers I.2 (Ulrike Bücking, Maren-Wanda Wolf)
      Schedule: Mo 12:00-14:00, Di 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-10-13)
      Location: Hs A (Raum B.006, 200 Pl.) (Arnimallee 22)

      Comments

      The LV MatheProfi I.2 consists of two lectures and a tutorial (compulsory participation) as well as independent work of about 10 hours per week (240 hours in total). In addition, we offer a wide range of services to support you.

      Registration for this KVV event is absolutely necessary: https://kvv.imp.fu-berlin.de, the tutorial places are distributed here!

      Please register with Campus Management and KVV.

    • 19225202 Practice seminar
      Practice seminar for Professional Mathematical Knowledge for Primary School Teachers I.2 (Ulrike Bücking)
      Schedule: Do 12:00-14:00, Do 14:00-16:00, Fr 10:00-12:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-10-10)
      Location: A3/SR 115 (Arnimallee 3-5)
    • 19225241 Zentralübung
      Large tutorial for Professional Mathematical Knowledge for Primary School Teachers I.2 (Ulrike Bücking, Jan-Hendrik de Wiljes)
      Schedule: Di 14:00-16:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: 1.3.14 Hörsaal A (Arnimallee 14)
    • 19226511 Seminar
      Seminar Multiscale Methods in Molecular Simulations (Luigi Delle Site)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-17)
      Location: Seminarraum in der Arnimallee 9

      Additional information / Pre-requisites

      Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.

      Comments

      Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.

      The discussion will concerns both, specific computational coding and conceptual developments.

      Suggested reading

      Related Basic Literature:

      (1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)

      (2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).

      (3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science

    • 19230015 Advanced seminar
      Mathematics Education - Selected Topics (N.N.)
      Schedule: Mi 12:00-15:00 (Class starts on: 2025-10-15)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

       

    • 19230115 Advanced seminar
      Mathematics Education - Selected Topics (N.N.)
      Schedule: Di 12:00-15:00 (Class starts on: 2025-10-14)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Das Seminar fokussiert die prozessbezogene Kompetenz des mathematischen Modellierens im Mathematikunterricht der Sekundarstufe I und II. Dafür werden verschiedene theoretische Ansätze erarbeitet und mit konkreten unterrichtsbezogenen Beispielen in Beziehung gesetzt. Ein Schwerpunkt des Seminars liegt dabei in der eigenständigen Durchführung von Modellierungsprozessen zusammen mit einer theoriegeleiteten Reflexion unterrichtlicher Einsatzmöglichkeiten. Weiterhin wird das mathematische Modellieren im Mathematikunterricht im Seminar mit übergreifenden Aspekten von Mathematikunterricht (z. B. Medieneinsatz) in Verbindung gesetzt.

    • 19230215 Advanced seminar
      Mathematics Education - Selected Topics (Thorsten Scheiner)
      Schedule: Termine siehe LV-Details (Class starts on: 2025-11-07)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      In line with the Science Council's demand for consideration of the growing importance of media literacy, according to which teachers should be enabled to prepare students for the competent use of information and communication technologies and to make digital media available for teaching and learning processes in schools, this seminar will focus on the following topics discuss the functions and effects of digital media in teaching and learning processes, analysing the possibilities of Internet and software use in mathematics lessons and demonstrate the advantages and disadvantages of using these digital tools using selected examples.

      The focus is on the practical handling of the possibilities of the Internet and selected programs (spreadsheet and dynamic geometry software). This is to take place in the form of intensive small group work. Afterwards, it is necessary to question the use of the respective tool with regard to achieving the goals of mathematics teaching and to work out examples for a problem-adequate application.

      Forms of active participation: active participation in discussions, working on tasks, presentations of projects. The module examination takes the form of an exam (60 min).

    • 19230515 Advanced seminar
      Mathematics Education - Development, Evaluation and Research (Brigitte Lutz-Westphal)
      Schedule: Di 09:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

      Suggested reading

      Ruf, Urs & Gallin, Peter (1998 bzw. spätere Auflagen): Dialogisches Lernen in Sprache und Mathematik, Band 1 und 2

      Ruf, Urs; Keller, Stefan & Winter, Felix (2008): Besser lernen im Dialog

      lerndialoge.ch

    • 19230615 Advanced seminar Cancelled
      Mathematics Education - Development, Evaluation and Research (N.N.)
      Schedule: Mi 12:00-15:00 (Class starts on: 2025-10-15)
      Location: keine Angabe

      Comments

      In this seminar we will deal with a current field of research in mathematics education. Innovative teaching concepts (e.g. research-based/self-organized/dialogical learning) form the main focus of the seminar and are developed in a theoretical and practical context.

      On the basis, methods and results of mathematics education research, own questions for learning and teaching mathematics are formulated, discussed and concretely developed. The students gain an insight into the methods of mathematics education research.

      Individual meetings may be held in blocks.

    • 19231534 Unterrichtspraktikum
      Practical Teaching Studies in Mathematics - Teaching Internship (Thorsten Scheiner)
      Schedule: Mo 13.10. 08:00-08:05 (Class starts on: 2025-10-13)
      Location: keine Angabe

      Comments

      Only for assigned students

    • 19231634 Unterrichtspraktikum
      Practical Teaching Studies in Mathematics - Teaching Internship (Brigitte Lutz-Westphal)
      Schedule: Mo 13.10. 08:00-08:05 (Class starts on: 2025-10-13)
      Location: keine Angabe

      Comments

      Only for assigned students

    • 19231734 Unterrichtspraktikum
      Practical Teaching Studies in Mathematics - Teaching Internship (Brigitte Lutz-Westphal, Thorsten Scheiner)
      Schedule: Mo 13.10. 08:00-08:05 (Class starts on: 2025-10-13)
      Location: keine Angabe

      Comments

      Only for assigned students

    • 19232009 Specialization Seminar
      Advanced Seminar for Practical Teaching Studies in Mathematics - Accompanying and Follow-up Seminar (Thorsten Scheiner)
      Schedule: Mo 02.03. 10:00-18:00, Di 03.03. 10:00-18:00 (Class starts on: 2026-03-02)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
    • 19232011 Seminar
      Practical Teaching Studies in Mathematics - Accompanying and Follow-up Seminar (Thorsten Scheiner)
      Schedule: Mi 14:00-16:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-10-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematis Education are part of the German teacher-training and held in German only.

    • 19232109 Specialization Seminar
      Advanced Seminar for Practical Teaching Studies in Mathematics - Accompanying and Follow-up Seminar (Thorsten Scheiner)
      Schedule: Mi 04.03. 10:00-18:00, Do 05.03. 10:00-18:00 (Class starts on: 2026-03-04)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
    • 19232111 Seminar
      Practical Teaching Studies in Mathematics - Accompanying and Follow-up Seminar (Thorsten Scheiner)
      Schedule: Mi 16:00-18:00, zusätzliche Termine siehe LV-Details (Class starts on: 2025-10-15)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)

      Comments

      Refer to German description. Courses of Mathematis Education are part of the German teacher-training and held in German only.

    • 19233701 Lecture
      Discovering Mathematics I (Julian Kern)
      Schedule: Mi 10:00-12:00, Fr 10:00-12:00 (Class starts on: 2025-10-15)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)

      Additional information / Pre-requisites

      This course is aimed at students of teacher training courses.

      Comments

      subject matter

      The focus is on practicing mathematical ways of thinking and working. These are trained on the basis of problems from combinatorics, elementary number theory and elementary geometry.

      compulsory attendance

      Attendance is mandatory for the central exercise on Monday.

    • 19233702 Practice seminar
      Practice seminar for Discovering Mathematics I (N.N.)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-24)
      Location: A3/Hs 001 Hörsaal (Arnimallee 3-5)
    • 19234401 Lecture
      Discrete Mathematics II - Optimization (Ralf Borndörfer)
      Schedule: Mo 14:00-16:00, Do 12:00-14:00 (Class starts on: 2025-10-16)
      Location: Mo A6/SR 032 Seminarraum (Arnimallee 6), Do A7/SR 031 (Arnimallee 7)

      Additional information / Pre-requisites

      Credit This course can be chosen as Discrete Mathematics II (DM II). If Discrete Mathematics II - Extreme Combinatorics is taken at the same time, one of the two courses can be chosen as DM II and the other as a supplementary module. Language This lecture is in English.

      Exam

      The exam takes place at the last lecture. The 2nd exam takes place in the last week of the summer holidays before the lectures resume.

      Comments

      This lecture starts the optimization branch of discrete mathematics. It deals with algorithmic graph theory and linear optimization.

      Contents

      Complexity: complexity measures, run time of algorithms, the classes P and NP, NP-completeness
      Matroids and Independence Systems: independence systems, matroids, trees, forests, oracles, optimization over independence systems
      Shortest Paths: nonnegative weights, general weights, all pairs
      Network Flows: Max-Flow-Min-Cut Theorem, augmenting paths, minimum cost flows, transport and allocation problems
      Polyhedra: faces, dimension formula, projections of polyhedra, transformation, polarity, representation theorems
      Foundations of linear optimization: Farkas Lemma, Duality Theorem
      Simplex algorithm: basis, degeneration, basis exchange, revised simplex algorithm, bounds, dual simplex algorithm, post-optimization, numerics
      Interior point and ellipsoid method: basics

      Audience

      This course is aimed at mathematics students with knowledge of discrete mathematics I, linear algebra and analysis. Some exercises require the use of a computer.

      Suggested reading

      M. Grötschel, Lineare Optimierung, eines der Vorlesungsskripte

      V. Chvátal, Linear Programming, Freeman 1983

      Additional

      Garey & Johnson, Computers and Intractability,  1979 (Complexity Theory)

      Bertsimas & Tsitsiklis, Introduction to Linear Optimization, 97 (Linear Programming)

      Korte & Vygen, Combinatorial Optimization, 2006 (Flows, Shortest Paths, Matchings)

    • 19234402 Practice seminar
      Practice seminar for Discrete Mathematics II - Optimization (N.N.)
      Schedule: Mo 16:00-18:00 (Class starts on: 2025-10-20)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19234441 Zentralübung
      Large tutorial for Discrete Mathematics II - Optimization (Ralf Borndörfer)
      Schedule: Mi 08:00-10:00 (Class starts on: 2025-10-15)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
    • 19235101 Lecture
      Function and distribution spaces (N.N.)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)

      Additional information / Pre-requisites

      Prerequisits: Analysis I — III, Linear Algebra I, II. 
      Recommended: Functional Analysis.

      Comments

      In this course we consider function spaces and spaces of distributions, also called generalised functions. Distributions play an important role in the theory of partial differential equations, as in contrast to functions, they are always differentiable. Hence, during the course we motivate the context via PDEs here and there. We will discuss: 

      Distribution spaces and their notion of convergence (on general domains)
      Sobolev spaces (on general domains)
      Tempered distributions and the Fourier transform (on R^d)
      Besov spaces (on R^d)
      Bony's para- and resonance products
       

      Suggested reading

      There will be lecture notes.

    • 19235102 Practice seminar
      Exercise: Function and distribution spaces (Willem Van Zuijlen)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
    • 19236101 Lecture
      Mathematisches Panorama (Anina Mischau, Sarah Wolf)
      Schedule: Mi 12:00-14:00 (Class starts on: 2025-10-15)
      Location: T9/SR 005 Übungsraum (Takustr. 9)

      Comments

      This is for a course in German - Short explanation in English:

      Mathematical Panorama is a two-hour overview course for First-Semester students of Mathematics (in particular, but not only, for teacher students) that presents the wide field of modern Mathematics - its history, its topics, its problems, its methods, some basic concepts, applications, etc.

       

      Suggested reading

      • Günter M. Ziegler und Andreas Loos: Panorama der Mathematik, Springer-Spektrum 2018, in Vorbereitung (wird in Auszügen zur Verfügung gestellt)
      • Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise, Springer 2009
        • Band 1: Von den Anfängen bis Leibniz und Newton
        • Band 2: Von Euler bis zur Gegenwart
      • Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
      • Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
      • Heinz Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
      • Richard Courant und Herbert Robbins, What is Mathematics?, Oxford UP 1941 (deutsch: Springer 2010)
      • Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999

    • 19236102 Practice seminar
      Übung zu: Mathematisches Panorama (Anina Mischau)
      Schedule: Fr 12:00-14:00 (Class starts on: 2025-10-24)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
    • 19236141 Zentralübung
      Zentralübung zu: Mathematisches Panorama (Anina Mischau, Sarah Wolf)
      Schedule: Mi 14:00-16:00 (Class starts on: 2025-10-15)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)
    • 19236320 Course
      Mathematical Pupil Society (8th grade) (Maik Pickl)
      Schedule: Mi 16:00-18:00 (Class starts on: 2025-09-10)
      Location: A6/SR 007/008 Seminarraum (Arnimallee 6)

      Comments

      The Mathematical Pupil Society "Leonhard Euler" (MSG) is an extra-curricular, free institution for the promotion of mathematically interested and talented secondary school students based at the Institute for Mathematics at Humboldt University Berlin in cooperation with other Berlin universities, currently the Technische Universität Berlin, Freie Universität Berlin and Hochschule für Technik und Wirtschaft.

      Since 1970, the Mathematical Pupil Society "Leonhard Euler" has been supporting mathematically interested and talented students. In more than 20 weekly courses, the approx. 250 participants from grades 5 to 12 gain exciting insights into various areas of mathematics beyond the subject matter of the school. The focus is on problem-oriented work, scientific methods and training for mathematical competitions.

      The members of the MSG meet weekly for two hours for regular circular work. The circles take place in the premises of Berlin universities and some Berlin schools -- especially here at the FU Berlin at the Institute of Mathematics (c/o Prof. Günter M. Ziegler); they are led by staff of the universities, by students of Berlin universities, by (partly former) teachers of Berlin schools and other mathematics enthusiasts.

    • 19236420 Course
      Mathematical School Society (9th grade) (Kerstin Hanff)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-09-09)
      Location: A6/SR 025/026 Seminarraum (Arnimallee 6)

      Comments

      The Mathematical Pupil Society "Leonhard Euler" (MSG) is an extra-curricular, free institution for the promotion of mathematically interested and talented secondary school students based at the Institute for Mathematics at Humboldt University Berlin in cooperation with other Berlin universities, currently the Technische Universität Berlin, Freie Universität Berlin and Hochschule für Technik und Wirtschaft.

      Since 1970, the Mathematical Pupil Society "Leonhard Euler" has been supporting mathematically interested and talented students. In more than 20 weekly courses, the approx. 250 participants from grades 5 to 12 gain exciting insights into various areas of mathematics beyond the subject matter of the school. The focus is on problem-oriented work, scientific methods and training for mathematical competitions.

      The members of the MSG meet weekly for two hours for regular circular work. The circles take place in the premises of Berlin universities and some Berlin schools -- especially here at the FU Berlin at the Institute of Mathematics (c/o Prof. Günter M. Ziegler); they are led by staff of the universities, by students of Berlin universities, by (partly former) teachers of Berlin schools and other mathematics enthusiasts.

    • 19236520 Course
      Mathematical Pupil Society (10th grade) (Nils Heumann)
      Schedule: Mo 16:00-18:00 (Class starts on: 2025-09-08)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)

      Comments

      The Mathematical Pupil Society "Leonhard Euler" (MSG) is an extra-curricular, free institution for the promotion of mathematically interested and talented secondary school students based at the Institute for Mathematics at Humboldt University Berlin in cooperation with other Berlin universities, currently the Technische Universität Berlin, Freie Universität Berlin and Hochschule für Technik und Wirtschaft.

      Since 1970, the Mathematical Pupil Society "Leonhard Euler" has been supporting mathematically interested and talented students. In more than 20 weekly courses, the approx. 250 participants from grades 5 to 12 gain exciting insights into various areas of mathematics beyond the subject matter of the school. The focus is on problem-oriented work, scientific methods and training for mathematical competitions.

      The members of the MSG meet weekly for two hours for regular circular work. The circles take place in the premises of Berlin universities and some Berlin schools -- especially here at the FU Berlin at the Institute of Mathematics (c/o Prof. Günter M. Ziegler); they are led by staff of the universities, by students of Berlin universities, by (partly former) teachers of Berlin schools and other mathematics enthusiasts.

    • 19236620 Course
      Mathematical Pupil Society (11th grade) (Felix Funk)
      Schedule: Mi 16:00-18:00 (Class starts on: 2025-09-10)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)

      Comments

      The Mathematical Pupil Society "Leonhard Euler" (MSG) is an extra-curricular, free institution for the promotion of mathematically interested and talented secondary school students based at the Institute for Mathematics at Humboldt University Berlin in cooperation with other Berlin universities, currently the Technische Universität Berlin, Freie Universität Berlin and Hochschule für Technik und Wirtschaft.

      Since 1970, the Mathematical Pupil Society "Leonhard Euler" has been supporting mathematically interested and talented students. In more than 20 weekly courses, the approx. 250 participants from grades 5 to 12 gain exciting insights into various areas of mathematics beyond the subject matter of the school. The focus is on problem-oriented work, scientific methods and training for mathematical competitions.

      The members of the MSG meet weekly for two hours for regular circular work. The circles take place in the premises of Berlin universities and some Berlin schools -- especially here at the FU Berlin at the Institute of Mathematics (c/o Prof. Günter M. Ziegler); they are led by staff of the universities, by students of Berlin universities, by (partly former) teachers of Berlin schools and other mathematics enthusiasts.

    • 19240317 Seminar / Undergraduate Course
      Advancing mathematics with AI (Georg Loho)
      Schedule: Di 14:00-16:00 (Class starts on: 2025-10-14)
      Location: A3/SR 120 (Arnimallee 3-5)

      Comments

      The course will probably be held in German. 

    • 19241710 Proseminar
      Proseminar Mathematics Panorama (Anna Maria Hartkopf)
      Schedule: Mo 14:00-16:00 (Class starts on: 2025-10-20)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)

      Suggested reading

      1. Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise;
      2. Band 1: Von den Anfängen bis Leibniz und Newton, Band 2: Von Euler bis zur Gegenwart, Springer 2009
      3. Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
      4. Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
      5. Heinz-Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
      6. Richard Courant und Herbert Robbins, Was ist Mathematik?, Springer 2010
      7. Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999
      8. Knoebel, Arthur; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David
      9. Mathematical masterpieces, Springer 2007
      10. Laubenbacher, Reinhard; Pengelley, David, Mathematical expeditions. Chronicles by the explorers, Springer 1999
      11. sowie abhängig vom Thema

    • 19242001 Lecture
      Partial Differential Equations II (Erica Ipocoana)
      Schedule: Di 08:00-10:00, Do 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)

      Comments

      This course builds on the material of the course Partial Differential Equations I as taught in the previous summer term. Methods for linear partial differential equations will be deepened and extended to nonlinear partial differential equations. A central topic of the course is the theory of monotone and maximal monotone operators. 

       

    • 19242002 Practice seminar
      Tutorial Partial Differential Equations II (Erica Ipocoana)
      Schedule: Do 12:00-14:00 (Class starts on: 2025-10-16)
      Location: A6/SR 031 Seminarraum (Arnimallee 6)
    • 19245420 Course
      Mathematical Pupil Society (12th grade) (Simon Hergersberg)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-09-09)
      Location: A3/SR 120 (Arnimallee 3-5)

      Comments

      Mo., 16-18: Jonathan Kliem

    • 19245910 Proseminar
      Undergraduate Seminar: Good mathematical teaching at university level (Jan-Hendrik de Wiljes, Benedikt Weygandt)
      Schedule: Di 10:00-12:00 (Class starts on: 2025-10-14)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Undergraduate seminar “Good Mathematical Teaching at University”

      What actually happens when students reflect on university teaching and redesign it to promote learning?

      It is always easy to criticize existing concepts—but that alone does not change anything! That's why we want to take the frequently demanded student participation literally and give you the opportunity to contribute your experiences, expertise, and perspective as learners to the further development of good university teaching.

      Let's engage in a thought experiment—perhaps a crazy one?

      • What would happen if students designed a math lecture that was meaningful and useful to them? Or even an entire module?
      • What kind of tutorials do you think are useful? What activities (thinking, calculating, discussing...) should take place in the respective courses (lectures, exercises, central exercises...) and in what format (frontal, individual, group...)?
      • And what about the teaching materials: What should exercises look like? Lecture notes? Exams?

      Procedure

      After a short general introduction, we will devote three weeks to each topic (designing lectures, (central) exercises, lecture notes, exercise sheets, exams), gather inspiration, and then work out our “good” approaches in pairs.

      At the end of the semester, we want to discuss and try out the ideas, approaches, and concepts you have developed with university lecturers!

       

      Requirements

      It is essential that you already have some experience with university teaching! You should have attended at least 2‒3 introductory lectures in mathematics. The focus will not so much be on the content taught there, but rather on becoming familiar with mathematical work at the university. More important than the individual subject content is a basic understanding of mathematical thinking and working methods—and, in particular, an interest in contemporary teaching.    

      Note: It is not planned to write a bachelor's thesis based on this proseminar. If you would like to write a thesis on a topic related to your proseminar, we recommend one of the other courses offered.

    • 19246911 Seminar
      Geometric Deep Learning (Christoph Tycowicz)
      Schedule: Fr 10:00-12:00 (Class starts on: 2025-10-17)
      Location: T9/055 Seminarraum (Takustr. 9)

      Comments

      Pre-requisites:
      A solid background in differential geometry or geometric computing will be advantageous but is not mandatory.
      Students who haven't followed any related courses (Differential Geometry I, Scientific Visualization, ...) can follow the seminar but should be willing to invest more time.

      Description:
      Geometric deep learning is a broad and emerging research paradigm concerned with the derivation and study of neural network architectures that respect the invariances and symmetries in data.
      Indeed, many real-world tasks come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world.
      Capturing these regularities via unified geometric principles has been shown to provide sizable empirical improvements.
      Examples of such geometric architectures include graph neural networks as well as models conditioned on data that reside on curved manifolds.

      The goal of this seminar will be to obtain in-depth knowledge about the core methodology in geometric deep learning as well as an overview of state-of-the-art methods.
      Students will acquire practical skills in reading, presenting, explaining, and discussing scientific papers.
      The seminar may be used as a preparation for an MSc thesis topic.

      Suggested reading

      Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021) Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478

    • 19247002 Practice seminar
      Übung zu Mathematisches Professionswissen für das Lehramt an Grundschulen I.1 - Quereinstieg (Wiebke Neumann)
      Schedule: Fr 14:00-16:00 (Class starts on: 2025-10-17)
      Location: A3/ 024 Seminarraum (Arnimallee 3-5)
    • 19247007 Integrierte Veranstaltung
      Mathematisches Professionswissen für das Lehramt an Grundschulen I.1 - Quereinstieg (Christine Scharlach)
      Schedule: Mo 12:00-14:00, Di 12:00-14:00 (Class starts on: 2025-10-13)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Additional information / Pre-requisites

      Studien- und Prüfungsordnung

      Comments

      Die LV MatheProfi I.1 besteht wöchentlich aus einer Integrierten Veranstaltung mit zwei Terminen (Teilnahmepflicht) und einem Tutorium (Übung, Teilnahmepflicht) sowie selbstständiger Arbeit im Umfang von ca. 4 h pro Woche (60 h gesamt).

      Da im kommenden Semester vieles wieder über das Whiteboard (ehemals KVV) des Mathematikfachbereichs laufen wird, ist eine Anmeldung zu dieser Veranstaltung im Whiteboard zwingend erforderlich: https://mycampus.imp.fu-berlin.de/portal

      Bitte melden Sie sich trotzdem auch im Campus Management an.

      Suggested reading

      Literatur (online über FU Account):
      Padberg, F., & Büchter, A. (2015). Einführung Mathematik Primarstufe - Arithmetik (Mathematik Primarstufe und Sekundarstufe I II). Berlin, Heidelberg: Springer Spektrum. [es gibt auch eine neuere Auflage von 2019]

    • 19247111 Seminar
      Ordinary Differential Equations (Marita Thomas)
      Schedule: Di 16:00-18:00 (Class starts on: 2025-10-14)
      Location: A6/SR 009 Seminarraum (Arnimallee 6)

      Comments

      Ordinary differential equations arise in many applications from physics, chemistry, biology or economics. This seminar extends the topics that were covered in the Analysis III course, e.g., eigenvalue problems and stability theory will be addressed. 

    • 19247701 Lecture
      Vertiefung Mathematik für das Grundschullehramt (Ulrike Bücking, Jan-Hendrik de Wiljes)
      Schedule: Do 08:00-10:00 (Class starts on: 2025-10-16)
      Location: A3/019 Seminarraum (Arnimallee 3-5)

      Comments

      Die LV Mathe Vertiefung für das Grundschullehramt besteht wöchentlich aus einer Vorlesung und einem Tutorium (Teilnahmepflicht) sowie selbständiger Arbeit. Inhaltlich liegt der Schwerpunkt auf Themen der Zahlentheorie und der Linearen Algebra, deren Anwendung für die Grundschule relevant sind.

      Die Veranstaltung wird als Mathematische Spezialisierung 1 im Studium Grundschulpädagogik anerkannt.

      Die Anmeldung zu dieser Veranstaltung im Whiteboard ist erforderlich: http://mycampus.imp.fu-berlin.de/portal/

      Bitte melden Sie sich auch wie immer im Campus Management an. Bei Problemen und Fragen melden Sie sich bitte direkt beim Dozierenden, dann veranlassen wir eine Anmeldung im Campus Management.

    • 19247702 Practice seminar
      Übung zu Vertiefung Mathematik für das Grundschullehramt (Jan-Hendrik de Wiljes)
      Schedule: Fr 10:00-12:00 (Class starts on: 2025-10-17)
      Location: A6/SR 032 Seminarraum (Arnimallee 6)