Masterstudiengang für ein Lehramt an Integrierten Sekundarschulen und Gymnasien (ab WiSe 18/19)
Fach 1 Mathematik
0563a_m37-
Analysis II (10 LP)
0082fA2.1-
19211601
Vorlesung
Analysis II Winter (Pavle Blagojevic)
Zeit: Di 10:00-12:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Inhalt
- Ergänzungen zur Analysis I. Uneigentliche Integrale.
- Gleichmäßige Konvergenz von Funktionenfolgen. Potenzreihen. Satz von Taylor.
- Elemente der Topologie. Normierte und metrische Räume. Offene Mengen. Konvergenz. Abgeschlossene Mengen. Stetigkeit. Kompaktheit.
- Differentialrechnung mehrerer Veränderlicher. Partielle, totale und stetige Differenzierbarkeit. Satz über die Umkehrfunktion. Satz über implizite Funktionen.
- Iterierte Integrale.
- Gewöhnliche Differentialgleichungen. Grundlegende Begriffe, Elementar lösbare Differentialgleichungen, Existenz- und Eindeutigkeitsresultate für Systeme.
Literaturhinweise
- O. Forster: Analysis 1 und 2. Vieweg/Springer.
- Königsberger, K: Analysis 1,2, Springer.
- E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
- H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.
-
19211601
Vorlesung
-
Lineare Algebra II (10 LP)
0082fA2.2-
19211701
Vorlesung
Lineare Algebra II Winter (Marcus Weber)
Zeit: Mo 08:00-10:00, Do 14:00-16:00 (Erster Termin: 16.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
https://www.zib.de/userpage/weber/LINA2.html
Kommentar
Inhalt:
- Determinanten
- Eigenwerte und Eigenvektoren: Diagonalisierbarkeit, Trigonalisierbarkeit, Satz von Cayley-Hamilton, Jordansche Normalform
- Bilinearformen
- Vektorräume mit Skalarprodukt: Euklidische, unitäre Vektorräume, orthogonale Projektion, Isometrien, selbstadjungierte Abbildungen, Gram-Schmidt-Orthonormalisierungsverfahren, Hauptachsentransformation
Voraussetzungen:
Lineare Algebra I
Literatur:
Wird in der Vorlesung genannt. -
19211702
Übung
Übung zu Lineare Algebra II (Marcus Weber)
Zeit: Di 08:00-10:00, Di 14:00-16:00, Mi 12:00-14:00, Do 16:00-18:00, Fr 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
-
19211701
Vorlesung
-
Zahlen, Gleichungen, algebraische Strukturen (10 LP)
0082fA2.3-
19200701
Vorlesung
Algebra und Zahlentheorie (Alexander Schmitt)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
Inhalt
Ausgewählte Themen aus:- Teilbarkeit in Ringen (insbesondere Z- und Polynomringe); Restklassen und Kongruenzen; Moduln und Ideale
- Euklidische, Hauptideal- und faktorielle Ringe
- Das quadratische Reziprozitätsgesetz
- Primzahltests und Kryptographie
- Die Struktur abelscher Gruppen (oder Moduln über Hauptidealringen)
- Satz über symmetrische Funktionen
- Körpererweiterungen, Galois-Korrespondenz; Konstruktionen mit Zirkel und Lineal
- Nicht-abelsche Gruppen (Satz von Lagrange, Normalteiler, Auflösbarkeit, Sylowgruppen)
-
19200702
Übung
Übung zu Algebra und Zahlentheorie (Alexander Schmitt)
Zeit: Mi 14:00-16:00, Do 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19200701
Vorlesung
-
Computerorientierte Mathematik I
0084dA1.6-
19200501
Vorlesung
Computerorientierte Mathematik I (5 LP) (Claudia Schillings)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
Inhalt:
Computer spielen heute in (fast) allen Lebenslagen eine wichtige Rolle. Die Computerorientierte Mathematik vermittelt grundlegende Kenntnisse im Umgang mit Rechnern zur Lösung mathematischer Probleme und eine Einführung in das algorithmische Denken. Gleichzeitig wird aber auch typische mathematische Software wie Matlab und Mathematica eingeführt. Die nötige Motivation für die betrachteten Fragestellungen liefern einfache Anwendungsbeispiele aus den angesprochenen Fächern. Der Inhalt es ersten Teils umfasst fundamentale Begriffe des numerischen Rechnens: Zahlendarstellung und Rundungsfehler, Kondition, Effizienz und Stabilität.Homepage: Alle aktuellen Informationen zu Vorlesung und Übungen
Literaturhinweise
Literatur: R. Kornhuber, C. Schuette, A. Fest: Mit Zahlen Rechnen (Skript zur Vorlesung)
-
19200502
Übung
Übung zu Computerorientierte Mathematik I (N.N.)
Zeit: Mo 12:00-14:00, Mo 14:00-16:00, Di 08:00-10:00, Di 16:00-18:00, Mi 10:00-12:00, Do 14:00-16:00, Fr 08:00-10:00 (Erster Termin: 13.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19200501
Vorlesung
-
Wissenschaftliches Arbeiten in der Mathematik
0084dB1.1-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19212211
Seminar
Seminar zu Themen der Geometrischen Analysis und der Differentialgeometrie (Elena Mäder-Baumdicker)
Zeit: Mi 15.10. 12:00-14:00, Mi 05.11. 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Ana I bis III, lineare Algebra I und II sowie mindestens einer der beiden Vorlesungen Differentialgeometrie I oder Differentialgleichungen I.
Kommentar
This seminar is intended for Bachelor's and Master's students with an interest in topics related to Geometric Analysis and Differential Geometry. Each semester, the seminar focuses on a different theme — examples include geometric variational problems, geometric flows, and geometric measure theory.
In the first meeting of the semester, students can express their interest in participating. In the second meeting, each participant selects a topic from a curated list. The presentations themselves will take place during a dedicated seminar week at the end of the term.
-
19226511
Seminar
Seminar Mehrskalenmethoden in molekularen Simulationen (Luigi Delle Site)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: Seminarraum in der Arnimallee 9
Zusätzl. Angaben / Voraussetzungen
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Kommentar
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Literaturhinweise
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19240317
Seminar/Proseminar
Mathematischer Fortschritt mit KI (Georg Loho)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Kommentar
Während Computer schon lange ein etabliertes Werkzeug in der Mathematik sind, führen die Entwicklungen rund um KI auch zu neuen Möglichkeiten für mathematischen Fortschritt.
In diesem Seminar werden wir grundlegende Prinzipien und Strategien betrachten (Verständnis mathematischen Folgerns, Experimentieren, Kreativität, Formalisierung), die von Entwicklungen rund um KI profitieren und zu neuen Entwicklungen in der Mathematik führen.
Dieses Seminar richtet sich hauptsächlich an Lehramtsstudierende Mathematik (Bachelor & Master), sowie Bachelorstudierende Mathematik. Der eingetragene regelmäßige Termin ist vorläufig und Tag / Uhrzeit kann noch mit den Teilnehmenden des Seminars am Anfang des Semesters angepasst werden.
-
19247111
Seminar
Gewöhnliche Differentialgleichungen (Marita Thomas)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Gewöhnliche Differentialgleichungen treten in vielen Anwendungen aus der Physik, Chemie, Biologie oder den Wirtschaftwissenschaften auf. Dieses Seminar erweitert die aus der Analysis III Vorlesung bekannten Inhalte. Behandelt werden u.A. Eigenwertprobleme und Stabilitätstheorie.
-
19208111
Seminar
-
Spezialthemen der Mathematik
0084dB2.11-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Funktionalanalysis
0084dB2.2-
19201901
Vorlesung
Funktionalanalysis (Dirk Werner)
Zeit: Di 10:00-12:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Inhalt:
Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von normierten (oder allgemeiner topologischen) Vektorräumen und stetigen Abbildungen zwischen ihnen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft.
Die Vorlesung behandelt Banach- und Hilberträume, lineare Operatoren und Funktionale sowie Spektraltheorie kompakter Operatoren.
Zielgruppe: Studierende vom 3./4. Semester an.
Voraussetzungen: Sicheres Beherrschen des Stoffs der Vorlesungen Analysis I/II und Lineare Algebra I/II.Literaturhinweise
Literatur:
- Dirk Werner: Funktionalanalysis, 8. Auflage, Springer-Verlag 2018
-
19201902
Übung
Übung zu Funktionalanalysis (Piotr Pawel Wozniak)
Zeit: Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Kommentar
Inhalt:
Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von normierten (oder allgemeiner topologischen) Vektorräumen und stetigen Abbildungen zwischen ihnen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft.
Die Vorlesung behandelt Banach- und Hilberträume, lineare Operatoren und Funktionale sowie Spektraltheorie kompakter Operatoren.
Zielgruppe: Studierende vom 4. Semester an.
Voraussetzungen: Sicheres Beherrschen des Stoffs der Vorlesungen Analysis I/II und Lineare Algebra I/II.
Literatur:- Dirk Werner: Funktionalanalysis, 6. Auflage, Springer-Verlag 2007, ISBN 978-3-540-72533-6
- Hans Wilhelm Alt: Lineare Funktionalanalysis : eine anwendungsorientierte Einführung. 5. Auflage. Springer-Verlag, 2006, ISBN 3-540-34186-2
- Harro Heuser: Funktionalanalysis: Theorie und Anwendung. 3. Auflage. Teubner-Verlag, 1992, ISBN 3-519-22206-X
-
19201901
Vorlesung
-
Stochastik II
0084dB2.4-
19212901
Vorlesung
Stochastik II (Felix Höfling)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzung: Stochastik I und Analysis I — III.
Kommentar
Inhalt:
- Grundlagen: bedingte Erwartungen; charakteristische Funktion; Konvergenzarten der Stochastik; gleichgradige Integrierbarkeit;
- Konstruktion stochastischer Prozesse und Beispiele: gaußsche Prozesse, Lévy-Prozesse, Brownsche Bewegung
- Martingale in diskreter Zeit: Konvergenz, Stoppsätze, Ungleichungen;
- Markovketten in diskreter und stetiger Zeit: Rekurrenz und Transienz, invariante Maße;
Literaturhinweise
- Klenke: Wahrscheinlichkeitstheorie
- Durrett: Probability. Theory and Examples.
Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
Further literature will be given during the lecture. -
19212902
Übung
Übung zu Stochastik II (Felix Höfling)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Inhalt
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
More precisely, the course will cover the following aspects of probability theory: - Measure theory and the Lebesgue integral
- Convergence of random variables and 0-1 laws
- Generating functions: branching processes and characteristic functions
- Markov chains
- Introduction to martingales
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
-
19212901
Vorlesung
-
Diskrete Mathematik I
0084dB3.2-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Numerik II
0084dB3.4-
19202101
Vorlesung
Basismodul: Numerik II (Robert Gruhlke)
Zeit: Mo 12:00-14:00, Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.
Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS
Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)
-
19202102
Übung
Übung zu Basismodul: Numerik II (André-Alexander Zepernick)
Zeit: Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202101
Vorlesung
-
Differentialgeometrie I
0084dB3.5-
19202601
Vorlesung
Differentialgeometrie I (Konrad Polthier)
Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Weitere Infos auf der Veranstaltungshomepage
Kommentar
Auswahl aus folgenden Themen:
- Kurven und Flächen im euklidischen Raum,
- Metriken und Riemann'sche Mannigfaltigkeiten,
- Oberflächenspannung und Krümmungsbegriffe,
- Vektorfelder, Tensoren, kovariante Ableitung,
- Geodätische Kurven, Exponentialabbildung,
- Satz von Gauß-Bonnet, Topologie,
- Verbindungen zur diskreten Differentialgeometrie.
Voraussetzungen:
Analysis I bis III und Lineare Algebra I und II
Literaturhinweise
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
-
19202602
Übung
Übung zu Differentialgeometrie I (Tillmann Kleiner, Konrad Polthier)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202601
Vorlesung
-
Höhere Algorithmik mit Anwendung
0084dB3.7-
19303501
Vorlesung
Höhere Algorithmik (Helmut Alt)
Zeit: Mo 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 13.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Zielgruppe
alle Masterstudenten, und Bachelorstudenten, die sich in Algorithmen vertiefen wollen.
Empfohlene Vorkenntnisse
Grundkenntnisse im Bereich Entwurf und Analyse von Algorithmen
Kommentar
Es werden Themen wie:
- allgemeine Algorithmenentwurfsprinzipien
- Flussprobleme in Graphen,
- zahlentheoretische Algorithmen (einschließlich RSA Kryptosystem),
- String Matching,
- NP-Vollständigkeit
- Approximationsalgorithmen für schwere Probleme,
- arithmetische Algorithmen und Schaltkreise sowie schnelle Fourier-Transformation
behandelt.
Literaturhinweise
- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 2nd Ed. McGraw-Hill 2001
- Kleinberg, Tardos: Algorithm Design Addison-Wesley 2005.
-
19303502
Übung
Übung zu Höhere Algorithmik (Helmut Alt)
Zeit: Mi 08:00-10:00, Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: T9/046 Seminarraum (Takustr. 9)
-
19303501
Vorlesung
-
Computeralgebra
0162bA1.2-
19207219
Seminaristische Übung
Formale Beweisverifikation (Christoph Spiegel, Silas Rathke)
Zeit: -
Ort: keine Angabe
Kommentar
Dieser zweiwöchige Blockkurs an der Freien Universität Berlin bietet eine praxisorientierte Einführung in die formale Beweisverifikation mit dem Theorembeweiser Lean. Die Vorlesungen finden am Zuse-Institut Berlin (ZIB) statt; die Räume für die Tutorien an der FU werden nach Anmeldestand bekanntgegeben. Der Kurs steht allen offen (auch Gasthörer*innen); bei den Tutorien haben FU-Studierende mit ABV-Bedarf Priorität. Bitte einen eigenen Laptop mitbringen. Erwartet werden solide Kenntnisse aus Analysis I und Linearer Algebra I; Programmierkenntnisse sind nicht erforderlich, eine technische Affinität ist jedoch hilfreich. Lehrsprache ist Englisch (Beiträge auf Deutsch sind willkommen). Alle Informationen und Materialien — u. a. zu Logik, Mengenlehre, natürlichen Zahlen, Unendlichkeit der Primzahlen und Grundzügen der Graphentheorie — finden sich auf der GitHub-Seite des Kurses.
Für eine Anrechnung im Master wird der Kurs um differenzierte Übungen und erweiterte Prüfungsleistungen ergänzt. Die Übungsaufgaben sind dreistufig: grundlegende Aufgaben (mit gut lesbaren Beweisvorlagen), vertiefte Aufgaben auf Master-Niveau sowie optionale Stretch-Aufgaben; während der Übungen erfolgt Betreuung und eine informelle Fortschrittsrückmeldung. Die Abschlussprüfung ist eine schriftliche Klausur, die sowohl Konzeptverständnis als auch praktische Lean-Fertigkeiten prüft. Zusätzlich bearbeiten Master-Studierende ein Lean-Formalisierungsprojekt (einzeln oder zu zweit) und präsentieren es in einem mündlichen Prüfungsgespräch ein bis zwei Wochen nach Kursende; die M.Sc.-Note ergibt sich aus Klausur und Projekt.
-
19207219
Seminaristische Übung
-
Fachdidaktik Mathematik - Ausgewählte Themen
0563aA1.1-
19230015
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Björn Schwarz)
Zeit: Mi 12:00-15:00 (Erster Termin: 15.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Das Seminar fokussiert die prozessbezogene Kompetenz des mathematischen Modellierens im Mathematikunterricht der Sekundarstufe I und II. Dafür werden verschiedene theoretische Ansätze erarbeitet und mit konkreten unterrichtsbezogenen Beispielen in Beziehung gesetzt. Ein Schwerpunkt des Seminars liegt dabei in der eigenständigen Durchführung von Modellierungsprozessen zusammen mit einer theoriegeleiteten Reflexion unterrichtlicher Einsatzmöglichkeiten. Weiterhin wird das mathematische Modellieren im Mathematikunterricht im Seminar mit übergreifenden Aspekten von Mathematikunterricht (z. B. Medieneinsatz) in Verbindung gesetzt.
-
19230115
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Björn Schwarz)
Zeit: Di 12:00-15:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Das Seminar fokussiert die prozessbezogene Kompetenz des mathematischen Modellierens im Mathematikunterricht der Sekundarstufe I und II. Dafür werden verschiedene theoretische Ansätze erarbeitet und mit konkreten unterrichtsbezogenen Beispielen in Beziehung gesetzt. Ein Schwerpunkt des Seminars liegt dabei in der eigenständigen Durchführung von Modellierungsprozessen zusammen mit einer theoriegeleiteten Reflexion unterrichtlicher Einsatzmöglichkeiten. Weiterhin wird das mathematische Modellieren im Mathematikunterricht im Seminar mit übergreifenden Aspekten von Mathematikunterricht (z. B. Medieneinsatz) in Verbindung gesetzt.
-
19230215
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Thorsten Scheiner)
Zeit: Termine siehe LV-Details (Erster Termin: 07.11.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Titel des Seminars: Aktivierende und inklusive Mathematik: Ein ganzheitlicher Ansatz im Unterricht
Seminarbeschreibung: In der heutigen Bildungslandschaft ist ein Mathematikunterricht gefragt, der weit über die reine Vermittlung fachlicher Inhalte hinausgeht. Dieses Seminar richtet sich an Lehramtsstudierende der Mathematik und hat das Ziel, zukünftige Lehrkräfte auf die Gestaltung eines Unterrichts vorzubereiten, der nicht nur kognitive Fähigkeiten fördert, sondern auch kritisches Denken, soziales Bewusstsein und das individuelle Potenzial der Lernenden einbezieht. Die Teilnehmenden lernen, Mathematikaufgaben kreativ zu entwickeln, um kognitiv aktivierende und inklusive Lernumgebungen zu schaffen. Der Schwerpunkt liegt auf der Konzeption von Aufgaben, die divergente Denkprozesse anregen, kritisches Denken fördern und sowohl individuelle als auch kooperative Lernwege ermöglichen.
Das Seminar findet als Blockveranstaltung an zwei Wochenenden statt (siehe Termine).
Aktive Teilnahmeformen umfassen die Mitarbeit in den Seminarsitzungen, die Lektüre von Fachtexten, die schriftliche Bearbeitung von Seminaraufgaben, die Analyse von Aufgabenpotenzialen sowie die Durchführung von Unterrichtsexperimenten. Zusätzlich erstellen die Teilnehmenden ein Reflexionsportfolio.
Modulprüfung: Hausarbeit
-
19230015
Hauptseminar
-
Fachdidaktik Mathematik - Entwicklung, Evaluation und Forschung
0563aA1.2-
19230515
Hauptseminar
Fachdidaktik Mathematik - Entwicklung, Evaluation und Forschung (Brigitte Lutz-Westphal)
Zeit: Di 09:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Dialogisches Lernen im Mathematikunterricht
Dieses Seminar beschäftigt sich vertieft mit der Theorie des Dialogischen Lernens und mit deren praktischen Umsetzung mithilfe von Lerntagebüchern. Das dialogische Lernen eröffnet einen neuen Blick auf das Lernen von Mathematik, auf die Rolle von Schüler/innen und Lehrer/innen im Lernprozess. Es ist eine Abwendung von der Defizitperspektive (d.h. im Unterricht muss die Lehrperson das beibringen/erklären, was die Schüler/innen noch nicht können) und eine Hinwendung zu einer Entwicklungsperspektive (Anknüpfen an Wissen, Vorstellungen und Motivation, die bereits vorhanden sind; Erweiterung der fachlichen Kompetenzen durch individuelle Herangehensweisen an den Stoff und individuelle Lösungswege; Würdigung des kreativen Potentials jedes/jeder Schülers/in). Das passende Instrument ist das Lerntagebuch, dessen Einsatz den Mathematikunterricht tiefgreifend verändert. Die Motivation wird gesteigert, individuelle Förderung wird möglich, das Wissen wird nachhaltig verankert. In diesem Seminar entwickeln wir die theoretischen Grundlagen und werden Lerntagebucharbeit praktisch durchführen. Am Ende des Semester ist eine Hausarbeit anzufertigen, deren Hauptteil aus der Dokumentation der Entwicklung und Erprobung einer Lerntagebuchaufgabe besteht.
Literaturhinweise
Ruf, Urs & Gallin, Peter (1998 bzw. spätere Auflagen): Dialogisches Lernen in Sprache und Mathematik, Band 1 und 2
Ruf, Urs; Keller, Stefan & Winter, Felix (2008): Besser lernen im Dialog
lerndialoge.ch
-
19230615
Hauptseminar
Abgesagt
Fachdidaktik Mathematik - Entwicklung, Evaluation und Forschung (N.N.)
Zeit: Mi 12:00-15:00 (Erster Termin: 15.10.2025)
Ort: keine Angabe
Kommentar
In diesem Seminar beschäftigen wir uns exemplarisch mit einem aktuellen Forschungsfeld der Mathematikdidaktik. Innovative Unterrichtskonzepte (z.B. forschendes/selbstorganisiertes/dialogisches Lernen) bilden den inhaltlichen Schwerpunkt des Seminars und werden theorie- und praxisbezogen erarbeitet.
Auf den Grundlagen, Methoden und Ergebnissen mathematikdidaktischer Forschung werden eigene Fragestellungen zum Lernen und Lehren von Mathematik formuliert, diskutiert und konkret ausgestaltet. Dabei erhalten die Studierenden einen Einblick in die Methoden der mathematikdidaktischen Forschung.
-
19230515
Hauptseminar
-
Wahlmodul: Vertiefung Fachdidaktik Mathematik
0563aA1.24-
19230015
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Björn Schwarz)
Zeit: Mi 12:00-15:00 (Erster Termin: 15.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Das Seminar fokussiert die prozessbezogene Kompetenz des mathematischen Modellierens im Mathematikunterricht der Sekundarstufe I und II. Dafür werden verschiedene theoretische Ansätze erarbeitet und mit konkreten unterrichtsbezogenen Beispielen in Beziehung gesetzt. Ein Schwerpunkt des Seminars liegt dabei in der eigenständigen Durchführung von Modellierungsprozessen zusammen mit einer theoriegeleiteten Reflexion unterrichtlicher Einsatzmöglichkeiten. Weiterhin wird das mathematische Modellieren im Mathematikunterricht im Seminar mit übergreifenden Aspekten von Mathematikunterricht (z. B. Medieneinsatz) in Verbindung gesetzt.
-
19230115
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Björn Schwarz)
Zeit: Di 12:00-15:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Das Seminar fokussiert die prozessbezogene Kompetenz des mathematischen Modellierens im Mathematikunterricht der Sekundarstufe I und II. Dafür werden verschiedene theoretische Ansätze erarbeitet und mit konkreten unterrichtsbezogenen Beispielen in Beziehung gesetzt. Ein Schwerpunkt des Seminars liegt dabei in der eigenständigen Durchführung von Modellierungsprozessen zusammen mit einer theoriegeleiteten Reflexion unterrichtlicher Einsatzmöglichkeiten. Weiterhin wird das mathematische Modellieren im Mathematikunterricht im Seminar mit übergreifenden Aspekten von Mathematikunterricht (z. B. Medieneinsatz) in Verbindung gesetzt.
-
19230215
Hauptseminar
Fachdidaktik Mathematik - Ausgewählte Themen (Thorsten Scheiner)
Zeit: Termine siehe LV-Details (Erster Termin: 07.11.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Titel des Seminars: Aktivierende und inklusive Mathematik: Ein ganzheitlicher Ansatz im Unterricht
Seminarbeschreibung: In der heutigen Bildungslandschaft ist ein Mathematikunterricht gefragt, der weit über die reine Vermittlung fachlicher Inhalte hinausgeht. Dieses Seminar richtet sich an Lehramtsstudierende der Mathematik und hat das Ziel, zukünftige Lehrkräfte auf die Gestaltung eines Unterrichts vorzubereiten, der nicht nur kognitive Fähigkeiten fördert, sondern auch kritisches Denken, soziales Bewusstsein und das individuelle Potenzial der Lernenden einbezieht. Die Teilnehmenden lernen, Mathematikaufgaben kreativ zu entwickeln, um kognitiv aktivierende und inklusive Lernumgebungen zu schaffen. Der Schwerpunkt liegt auf der Konzeption von Aufgaben, die divergente Denkprozesse anregen, kritisches Denken fördern und sowohl individuelle als auch kooperative Lernwege ermöglichen.
Das Seminar findet als Blockveranstaltung an zwei Wochenenden statt (siehe Termine).
Aktive Teilnahmeformen umfassen die Mitarbeit in den Seminarsitzungen, die Lektüre von Fachtexten, die schriftliche Bearbeitung von Seminaraufgaben, die Analyse von Aufgabenpotenzialen sowie die Durchführung von Unterrichtsexperimenten. Zusätzlich erstellen die Teilnehmenden ein Reflexionsportfolio.
Modulprüfung: Hausarbeit
-
19230515
Hauptseminar
Fachdidaktik Mathematik - Entwicklung, Evaluation und Forschung (Brigitte Lutz-Westphal)
Zeit: Di 09:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Dialogisches Lernen im Mathematikunterricht
Dieses Seminar beschäftigt sich vertieft mit der Theorie des Dialogischen Lernens und mit deren praktischen Umsetzung mithilfe von Lerntagebüchern. Das dialogische Lernen eröffnet einen neuen Blick auf das Lernen von Mathematik, auf die Rolle von Schüler/innen und Lehrer/innen im Lernprozess. Es ist eine Abwendung von der Defizitperspektive (d.h. im Unterricht muss die Lehrperson das beibringen/erklären, was die Schüler/innen noch nicht können) und eine Hinwendung zu einer Entwicklungsperspektive (Anknüpfen an Wissen, Vorstellungen und Motivation, die bereits vorhanden sind; Erweiterung der fachlichen Kompetenzen durch individuelle Herangehensweisen an den Stoff und individuelle Lösungswege; Würdigung des kreativen Potentials jedes/jeder Schülers/in). Das passende Instrument ist das Lerntagebuch, dessen Einsatz den Mathematikunterricht tiefgreifend verändert. Die Motivation wird gesteigert, individuelle Förderung wird möglich, das Wissen wird nachhaltig verankert. In diesem Seminar entwickeln wir die theoretischen Grundlagen und werden Lerntagebucharbeit praktisch durchführen. Am Ende des Semester ist eine Hausarbeit anzufertigen, deren Hauptteil aus der Dokumentation der Entwicklung und Erprobung einer Lerntagebuchaufgabe besteht.
Literaturhinweise
Ruf, Urs & Gallin, Peter (1998 bzw. spätere Auflagen): Dialogisches Lernen in Sprache und Mathematik, Band 1 und 2
Ruf, Urs; Keller, Stefan & Winter, Felix (2008): Besser lernen im Dialog
lerndialoge.ch
-
19230615
Hauptseminar
Abgesagt
Fachdidaktik Mathematik - Entwicklung, Evaluation und Forschung (N.N.)
Zeit: Mi 12:00-15:00 (Erster Termin: 15.10.2025)
Ort: keine Angabe
Kommentar
In diesem Seminar beschäftigen wir uns exemplarisch mit einem aktuellen Forschungsfeld der Mathematikdidaktik. Innovative Unterrichtskonzepte (z.B. forschendes/selbstorganisiertes/dialogisches Lernen) bilden den inhaltlichen Schwerpunkt des Seminars und werden theorie- und praxisbezogen erarbeitet.
Auf den Grundlagen, Methoden und Ergebnissen mathematikdidaktischer Forschung werden eigene Fragestellungen zum Lernen und Lehren von Mathematik formuliert, diskutiert und konkret ausgestaltet. Dabei erhalten die Studierenden einen Einblick in die Methoden der mathematikdidaktischen Forschung.
-
19230015
Hauptseminar
-
Wahlmodul: Proseminar Mathematik - Vertiefung Lehramt
0563aA1.25-
19214010
Proseminar
Proseminar "Zaubertricks mit mathematischem Hintergrund" (Ehrhard Behrends)
Zeit: Mo 14:00-16:00 (Erster Termin: 20.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Es sollen Zaubertricks mit mathematischem Hintergrund analysiert werden.
Literaturhinweise
Literatur: Mein 2017 bei Springer Spektrum erschienenes Buch "Zaubern und Mathematik" sowie einige Originalarbeiten zum Thema.
-
19241710
Proseminar
Proseminar Panorama der Mathematik (Anna Maria Hartkopf)
Zeit: Mo 14:00-16:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Literaturhinweise
- Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise;
- Band 1: Von den Anfängen bis Leibniz und Newton, Band 2: Von Euler bis zur Gegenwart, Springer 2009
- Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
- Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
- Heinz-Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
- Richard Courant und Herbert Robbins, Was ist Mathematik?, Springer 2010
- Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999
- Knoebel, Arthur; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David
- Mathematical masterpieces, Springer 2007
- Laubenbacher, Reinhard; Pengelley, David, Mathematical expeditions. Chronicles by the explorers, Springer 1999
- sowie abhängig vom Thema
-
19245910
Proseminar
Proseminar: Gute mathematische Hochschullehre (Jan-Hendrik de Wiljes, Benedikt Weygandt)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Proseminar „Gute mathematische Hochschullehre“
Was passiert eigentlich, wenn Studierende Hochschullehre reflektieren und lernförderlich (um)gestalten?
Es ist immer einfach, bestehende Konzepte zu kritisieren ‒ aber davon alleine ändert sich ja nichts! Daher wollen wir die häufig geforderte studentische Partizipation wortwörtlich nehmen und euch die Gelegenheit geben, eure Erfahrungen, Expertise und Perspektive als Lernende in die Weiterentwicklung guter Hochschullehre einzubringen.
Lassen wir uns dafür mal auf ein ‒ vielleicht verrücktes? ‒ Gedankenexperiment ein:
- Was würde herauskommen, wenn Studierende eine für sie selbst sinnvolle und gute Mathe-Vorlesung gestalten? Oder gleich ein ganzes Modul?
- Welche Art von Tutorien haltet ihr für sinnvoll? Welche Tätigkeiten (denken, nachrechnen, diskutieren ...) sollten in den jeweiligen Veranstaltungen (VL, Übung, Zentralübung...) in welchem Format (frontal, einzeln, Gruppe ...) passieren?
- Und was ist mit dem Material: Wie sollten Übungsaufgaben aussehen? Skripte? Klausuren?
Ablauf
Nach einer kurzen allgemeinen Intro widmen wir uns jeweils für 3 Wochen einem Thema (Gestaltung von Vorlesungen, (Zentral-)Übungen, Skripten, Übungszetteln, Klausuren), sammeln Inspirationen und erarbeiten dann in Tandems jeweils unsere "guten" Ansätze aus.
Zum Abschluss des Semesters wollen wir die von euch erarbeiteten Ideen, Ansätze und Konzepte auch mit Hochschullehrenden diskutieren und ausprobieren!
Voraussetzungen
Wichtig ist, dass ihr bereits erste Erfahrungen mit Hochschullehre gemacht habt! Mindestens 2‒3 Anfangsvorlesungen in Mathematik sollten besucht worden sein. Es wird nicht so sehr um die dort vermittelten Inhalte gehen, sondern vielmehr darum, mathematisches Arbeiten an der Hochschule kennengelernt zu haben. Wichtiger als der einzelne Fachinhalt ist ein Grundverständnis für mathematische Denk- und Arbeitsweisen ‒ und insbesondere auch ein Interesse für zeitgemäße Lehre.
Hinweis: Es ist nicht vorgesehen, aufbauend auf dieses Proseminar eine Bachelorarbeit zu verfassen. Falls man diese passend zum Proseminar verfassen möchte, empfehlen wir eine der anderen angebotenen Veranstaltungen.
-
19214010
Proseminar
-
F1 Mathematik - Schulpraktische Studien im Unterrichtsfach Mathematik - Fach 1
0563aA1.3-
19231534
Unterrichtspraktikum
Schulpraktische Studien im Fach Mathematik - Unterrichtspraktikum (Thorsten Scheiner)
Zeit: Mo 13.10. 08:00-08:05 (Erster Termin: 13.10.2025)
Ort: keine Angabe
Kommentar
Nur für zugeordnete Studierende
-
19231634
Unterrichtspraktikum
Schulpraktische Studien im Fach Mathematik - Unterrichtspraktikum (Brigitte Lutz-Westphal)
Zeit: Mo 13.10. 08:00-08:05 (Erster Termin: 13.10.2025)
Ort: keine Angabe
Kommentar
Nur für zugeordnete Studierende
-
19231734
Unterrichtspraktikum
Schulpraktische Studien im Fach Mathematik - Unterrichtspraktikum (Brigitte Lutz-Westphal, Thorsten Scheiner)
Zeit: Mo 13.10. 08:00-08:05 (Erster Termin: 13.10.2025)
Ort: keine Angabe
Kommentar
Nur für zugeordnete Studierende
-
19232011
Seminar
Schulpraktische Studien im Fach Mathematik - Begleit- und Nachbereitungsseminar (Thorsten Scheiner)
Zeit: Mi 14:00-16:00, zusätzliche Termine siehe LV-Details (Erster Termin: 15.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Diese Veranstaltung umfasst das Begleit- und das Nachbereitungsseminar.
Das Begleitseminar findet während des Praxissemesters statt. Im Begleitseminar werden für das Unterrichtspraktikum relevante Themen (z.B. Leistungsbewertung, Differenzierung, Inklusion, Diagnose, Üben) praxisbezogen beleuchtet.
Das Nachbereitungsseminar bildet den Abschluss der Schulpraktischen Studien zur Planung, Durchführung und Analyse von Mathematikunterricht. Auf der Grundlage der im Rahmen des Unterrichtspraktikums gewonnenen Erfahrungen werden typische Situationen des Lehr-Lern-Geschehens reflektiert. Daran schließt sich die individuelle Auseinandersetzung mit den ersten eigenen unterrichtlichen Versuchen an. Ziel ist es, die innerhalb dieser Veranstaltungsreihe gewonnenen Kriterien zur Beobachtung und Bewertung von Unterricht für die Auswertung der eigenen didaktischen Bemühungen zu nutzen und Konsequenzen für eine künftig verbesserte Planung abzuleiten.
-
19232111
Seminar
Schulpraktische Studien im Fach Mathematik - Begleit- und Nachbereitungsseminar (Thorsten Scheiner)
Zeit: Mi 16:00-18:00, zusätzliche Termine siehe LV-Details (Erster Termin: 15.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Diese Veranstaltung umfasst das Begleit- und das Nachbereitungsseminar.
Das Begleitseminar findet während des Praxissemesters statt. Im Begleitseminar werden für das Unterrichtspraktikum relevante Themen (z.B. Leistungsbewertung, Differenzierung, Inklusion, Diagnose, Üben) praxisbezogen beleuchtet.
Das Nachbereitungsseminar bildet den Abschluss der Schulpraktischen Studien zur Planung, Durchführung und Analyse von Mathematikunterricht. Auf der Grundlage der im Rahmen des Unterrichtspraktikums gewonnenen Erfahrungen werden typische Situationen des Lehr-Lern-Geschehens reflektiert. Daran schließt sich die individuelle Auseinandersetzung mit den ersten eigenen unterrichtlichen Versuchen an. Ziel ist es, die innerhalb dieser Veranstaltungsreihe gewonnenen Kriterien zur Beobachtung und Bewertung von Unterricht für die Auswertung der eigenen didaktischen Bemühungen zu nutzen und Konsequenzen für eine künftig verbesserte Planung abzuleiten.
-
19231534
Unterrichtspraktikum
-
Wissenschaftliches Arbeiten in der Mathematik - Lehramt
0563aA1.31-
19207219
Seminaristische Übung
Formale Beweisverifikation (Christoph Spiegel, Silas Rathke)
Zeit: -
Ort: keine Angabe
Kommentar
Dieser zweiwöchige Blockkurs an der Freien Universität Berlin bietet eine praxisorientierte Einführung in die formale Beweisverifikation mit dem Theorembeweiser Lean. Die Vorlesungen finden am Zuse-Institut Berlin (ZIB) statt; die Räume für die Tutorien an der FU werden nach Anmeldestand bekanntgegeben. Der Kurs steht allen offen (auch Gasthörer*innen); bei den Tutorien haben FU-Studierende mit ABV-Bedarf Priorität. Bitte einen eigenen Laptop mitbringen. Erwartet werden solide Kenntnisse aus Analysis I und Linearer Algebra I; Programmierkenntnisse sind nicht erforderlich, eine technische Affinität ist jedoch hilfreich. Lehrsprache ist Englisch (Beiträge auf Deutsch sind willkommen). Alle Informationen und Materialien — u. a. zu Logik, Mengenlehre, natürlichen Zahlen, Unendlichkeit der Primzahlen und Grundzügen der Graphentheorie — finden sich auf der GitHub-Seite des Kurses.
Für eine Anrechnung im Master wird der Kurs um differenzierte Übungen und erweiterte Prüfungsleistungen ergänzt. Die Übungsaufgaben sind dreistufig: grundlegende Aufgaben (mit gut lesbaren Beweisvorlagen), vertiefte Aufgaben auf Master-Niveau sowie optionale Stretch-Aufgaben; während der Übungen erfolgt Betreuung und eine informelle Fortschrittsrückmeldung. Die Abschlussprüfung ist eine schriftliche Klausur, die sowohl Konzeptverständnis als auch praktische Lean-Fertigkeiten prüft. Zusätzlich bearbeiten Master-Studierende ein Lean-Formalisierungsprojekt (einzeln oder zu zweit) und präsentieren es in einem mündlichen Prüfungsgespräch ein bis zwei Wochen nach Kursende; die M.Sc.-Note ergibt sich aus Klausur und Projekt.
-
19240317
Seminar/Proseminar
Mathematischer Fortschritt mit KI (Georg Loho)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Kommentar
Während Computer schon lange ein etabliertes Werkzeug in der Mathematik sind, führen die Entwicklungen rund um KI auch zu neuen Möglichkeiten für mathematischen Fortschritt.
In diesem Seminar werden wir grundlegende Prinzipien und Strategien betrachten (Verständnis mathematischen Folgerns, Experimentieren, Kreativität, Formalisierung), die von Entwicklungen rund um KI profitieren und zu neuen Entwicklungen in der Mathematik führen.
Dieses Seminar richtet sich hauptsächlich an Lehramtsstudierende Mathematik (Bachelor & Master), sowie Bachelorstudierende Mathematik. Der eingetragene regelmäßige Termin ist vorläufig und Tag / Uhrzeit kann noch mit den Teilnehmenden des Seminars am Anfang des Semesters angepasst werden.
-
19245910
Proseminar
Proseminar: Gute mathematische Hochschullehre (Jan-Hendrik de Wiljes, Benedikt Weygandt)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Proseminar „Gute mathematische Hochschullehre“
Was passiert eigentlich, wenn Studierende Hochschullehre reflektieren und lernförderlich (um)gestalten?
Es ist immer einfach, bestehende Konzepte zu kritisieren ‒ aber davon alleine ändert sich ja nichts! Daher wollen wir die häufig geforderte studentische Partizipation wortwörtlich nehmen und euch die Gelegenheit geben, eure Erfahrungen, Expertise und Perspektive als Lernende in die Weiterentwicklung guter Hochschullehre einzubringen.
Lassen wir uns dafür mal auf ein ‒ vielleicht verrücktes? ‒ Gedankenexperiment ein:
- Was würde herauskommen, wenn Studierende eine für sie selbst sinnvolle und gute Mathe-Vorlesung gestalten? Oder gleich ein ganzes Modul?
- Welche Art von Tutorien haltet ihr für sinnvoll? Welche Tätigkeiten (denken, nachrechnen, diskutieren ...) sollten in den jeweiligen Veranstaltungen (VL, Übung, Zentralübung...) in welchem Format (frontal, einzeln, Gruppe ...) passieren?
- Und was ist mit dem Material: Wie sollten Übungsaufgaben aussehen? Skripte? Klausuren?
Ablauf
Nach einer kurzen allgemeinen Intro widmen wir uns jeweils für 3 Wochen einem Thema (Gestaltung von Vorlesungen, (Zentral-)Übungen, Skripten, Übungszetteln, Klausuren), sammeln Inspirationen und erarbeiten dann in Tandems jeweils unsere "guten" Ansätze aus.
Zum Abschluss des Semesters wollen wir die von euch erarbeiteten Ideen, Ansätze und Konzepte auch mit Hochschullehrenden diskutieren und ausprobieren!
Voraussetzungen
Wichtig ist, dass ihr bereits erste Erfahrungen mit Hochschullehre gemacht habt! Mindestens 2‒3 Anfangsvorlesungen in Mathematik sollten besucht worden sein. Es wird nicht so sehr um die dort vermittelten Inhalte gehen, sondern vielmehr darum, mathematisches Arbeiten an der Hochschule kennengelernt zu haben. Wichtiger als der einzelne Fachinhalt ist ein Grundverständnis für mathematische Denk- und Arbeitsweisen ‒ und insbesondere auch ein Interesse für zeitgemäße Lehre.
Hinweis: Es ist nicht vorgesehen, aufbauend auf dieses Proseminar eine Bachelorarbeit zu verfassen. Falls man diese passend zum Proseminar verfassen möchte, empfehlen wir eine der anderen angebotenen Veranstaltungen.
-
19207219
Seminaristische Übung
-
-
Computerorientierte Mathematik II 0084dA1.7
-
Höhere Analysis 0084dB2.1
-
Funktionentheorie 0084dB2.3
-
Geometrie 0084dB2.7
-
Datenstrukturen und Datenabstraktion mit Anwendung 0084dB2.8
-
Mathematisches Projekt 0084dB2.9
-
Differentialgleichungen I 0084dB3.1
-
Algebra I 0084dB3.3
-
Topologie I 0084dB3.6
-
Visualisierung 0084dB3.8.
-
Wahlmodul: Mathematisches Panorama 2A 0563aA1.26
-
Wahlmodul: Mathematisches Panorama 2B 0563aA1.27
-
Wahlmodul: Gender und Diversity im Mathematikunterricht 0563aA1.28
-
Wissenschaftliches Arbeiten in der Mathematik 0563aA1.4
-
