Mathematik
Mathematik
0280c_MA120-
Basismodul: Numerik II
0280cA1.11-
19202101
Vorlesung
Basismodul: Numerik II (Robert Gruhlke)
Zeit: Mo 12:00-14:00, Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.
Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS
Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)
-
19202102
Übung
Übung zu Basismodul: Numerik II (André-Alexander Zepernick)
Zeit: Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202101
Vorlesung
-
Basismodul: Partielle Differentialgleichungen II
0280cA1.14-
19242001
Vorlesung
Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Di 08:00-10:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: Di A6/SR 031 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Diese Veranstaltung baut auf dem Kursmaterial von Partielle Differentialgleichungen I des vorangegangenen Sommersemesters auf. Methoden für lineare partielle Differentialgleichungen werden vertieft und erweitert auf nichtlineare partielle Differentialgleichungen. Im Mittelpunkt der Vorlesung steht die Theorie monotoner und maximal monotoner Operatoren.
-
19242002
Übung
Übungen zu Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19242001
Vorlesung
-
Basismodul: Stochastik II
0280cA1.15-
19212901
Vorlesung
Stochastik II (Felix Höfling)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzung: Stochastik I und Analysis I — III.
Kommentar
Inhalt:
- Grundlagen: bedingte Erwartungen; charakteristische Funktion; Konvergenzarten der Stochastik; gleichgradige Integrierbarkeit;
- Konstruktion stochastischer Prozesse und Beispiele: gaußsche Prozesse, Lévy-Prozesse, Brownsche Bewegung
- Martingale in diskreter Zeit: Konvergenz, Stoppsätze, Ungleichungen;
- Markovketten in diskreter und stetiger Zeit: Rekurrenz und Transienz, invariante Maße;
Literaturhinweise
- Klenke: Wahrscheinlichkeitstheorie
- Durrett: Probability. Theory and Examples.
Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
Further literature will be given during the lecture. -
19212902
Übung
Übung zu Stochastik II (Felix Höfling)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Inhalt
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
More precisely, the course will cover the following aspects of probability theory: - Measure theory and the Lebesgue integral
- Convergence of random variables and 0-1 laws
- Generating functions: branching processes and characteristic functions
- Markov chains
- Introduction to martingales
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
-
19212901
Vorlesung
-
Basismodul: Topologie II
0280cA1.18-
19206201
Vorlesung
Basismodul: Topologie II (Pavle Blagojevic)
Zeit: Di 14:00-16:00, Do 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: Singuläre Homologie- und Kohomologietheorie mit Anwendungen, Homologie von CW-Komplexen, Grundbegriffe der Homotopietheorie
Literaturhinweise
Literatur
- Hatcher, Allen: Algebraic Topology; Cambridge University Press.
- http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- Lück, Wolfgang: Algebraische Topologie, Homologie und Mannigfaltigkeiten; Vieweg.
-
19206202
Übung
Übung zu Topologie II (Katarina Krivokuca)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19206201
Vorlesung
-
Basismodul: Differentialgeometrie I
0280cA1.3-
19202601
Vorlesung
Differentialgeometrie I (Konrad Polthier)
Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Weitere Infos auf der Veranstaltungshomepage
Kommentar
Auswahl aus folgenden Themen:
- Kurven und Flächen im euklidischen Raum,
- Metriken und Riemann'sche Mannigfaltigkeiten,
- Oberflächenspannung und Krümmungsbegriffe,
- Vektorfelder, Tensoren, kovariante Ableitung,
- Geodätische Kurven, Exponentialabbildung,
- Satz von Gauß-Bonnet, Topologie,
- Verbindungen zur diskreten Differentialgeometrie.
Voraussetzungen:
Analysis I bis III und Lineare Algebra I und II
Literaturhinweise
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
-
19202602
Übung
Übung zu Differentialgeometrie I (Tillmann Kleiner, Konrad Polthier)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202601
Vorlesung
-
Basismodul: Diskrete Geometrie I
0280cA1.5-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Basismodul: Diskrete Mathematik II
0280cA1.8-
19234401
Vorlesung
Diskrete Mathematik II - Optimierung (Ralf Borndörfer)
Zeit: Mo 14:00-16:00, Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: Mo A6/SR 032 Seminarraum (Arnimallee 6), Do A7/SR 031 (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Anrechnung
Diese Veranstaltung kann als Diskrete Mathematik II (DM II) gewählt werden.
Bei gleichzeitiger Belegung von Diskrete Mathematik II - Extremale Kombinatorik kann einer der beiden Kurse als DM II und der andere als Ergänzungsmodul gewählt werden.
Sprache
Die VL findet auf Englisch statt.
Klausur
Die Klausur findet in der letzten Vorlesung statt. Die Nachklausur findet in der Woche vor dem Wiederbeginn der Vorlesungen statt.
Kommentar
Diese Vorlesung startet den Optimierungszweig der Diskreten Mathematik. Sie behandelt die Algorithmische Graphentheorie und die Lineare Optimierung.
Inhalt
- Komplexität: Komplexitätsmaße, Laufzeit von Algorithmen, die Klassen P und NP, NP-Vollständigkeit
- Matroide und Unabhängigkeitssysteme: Unabhängigkeitssysteme, Matroide, Bäume, Wälder, Orakel, Optimierung über Unabhängigkeitssystemen
- Kürzeste Wege: Nichtnegative Gewichte, allgemeine Gewichte, all pairs
- Netzwerflüsse: Das Max-Flow-Min-Cut Theorem, Augmentierende Wege, Minimalkostenflüsse, Transport- und Zuordnungsprobleme
- Polyeder: Seitenflächen, Dimensionsformel, Projektionen von Polyedern, Transformation, Polarität, Darstellungssätze.
- Grundlagen der Linearen Optimierung: Farkas Lemma, Dualitätssatz.
- Simplexalgorithmus: Basis, Degeneration, Basistausch, revidierter Simplexalgorithmus, Schranken, dualer Simplexalgorithmus, Postoptimierung, Numerik.
- Innere Punkte und Ellipsoidmethode: Grundlagen
Zielgruppe
Diese Veranstaltung richtet sich an Studierende der Mathematik mit Vorkenntnissen in Diskreter Mathematik I, Linearer Algebra und Analysis. Einige Übungsaufgaben erfordern den Einsatz eines Computers.
Literaturhinweise
M. Grötschel, Lineare Optimierung, eines der Vorlesungsskripte
V. Chvátal, Linear Programming, Freeman 1983
Additional
Garey & Johnson, Computers and Intractability, 1979 (Complexity Theory)
Bertsimas & Tsitsiklis, Introduction to Linear Optimization, 97 (Linear Programming)
Korte & Vygen, Combinatorial Optimization, 2006 (Flows, Shortest Paths, Matchings)
-
19234402
Übung
Übung zu Diskrete Mathematik II - Optimierung (N.N.)
Zeit: Mo 16:00-18:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19234401
Vorlesung
-
Aufbaumodul: Algebra III
0280cA2.1-
19222301
Vorlesung
Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mo 12:00-14:00 (Erster Termin: 03.11.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: eine Auswahl der Themen
- Eigenschaften von Morphismen (eigentlich, projektiv, glatt)
- Divisoren
- (quasi-)cohärente Garben
- Kohomologie
- Hilbert-Funktion
weitere Eigenschaften von Morphismen (eigentlich, ganz, regulär, glatt, étale, ...)
- Grothendieck Topologien
- cohomology (Čech, étale, ...)
Literaturhinweise
For example: Introduction to Schemes, Geir Ellingsrud and John Christian Otten
-
19222302
Übung
Übung zu Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mi 10:00-12:00 (Erster Termin: 29.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19222301
Vorlesung
-
Aufbaumodul: Diskrete Geometrie III
0280cA2.3-
19205901
Vorlesung
Aufbaumodul: Diskrete Geometrie III (Ansgar Freyer)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Die Zielgruppe sind Studenten mit einem soliden Hintergrund in diskreter Geometrie und/oder konvexer Geometrie (en par mit Discrete Geometry I & II). Die Themen dieses Kurses sind fortgeschrittene Themen in diskreter Geometrie, die Anwendungen und Inkarnationen in Differentialgeometrie, Topologie, Kombinatorik und algebraischer Geometrie finden. Anforderungen: Vorzugsweise Diskrete Geometrie I und II.
Kommentar
Dies ist der dritte Teil der Vorlesungsreihe Diskrete Geometrie. Die Vorlesung wird voraussichtlich auf Englisch gehalten werden. Daher folgt eine Beschreibung des Inhalts auf Englisch. This is the third in a series of three courses on discrete geometry. This advanced course will cover a selection of the following topics (depending on the interests of the audience): 1. Oriented Matroids along the lines of the book Oriented Matroids by Björner, Las Vergnas, Sturmfels, White, and Ziegler; and/or 2. Triangulations along the lines of the book Triangulations by de Loera, Rambau, and Santos; and/or 3. Discriminants and tropical geometry along the lines of the book Discriminants, Resultants, and multidimensional determinants by Gelfand, Kapranov, and Zelevinsky; and/or 4. Combinatorics and commutative algebra along the lines of the book Combinatorics and commutative algebra by Stanley.
Literaturhinweise
Will be announced in class.
-
19205902
Übung
Übung zu Aufbaumodul Diskrete Geometrie III (Ansgar Freyer)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
-
19205901
Vorlesung
-
Aufbaumodul: Numerik IV
0280cA2.6-
19206401
Vorlesung
Numerik IV: Koevolution von komplexen Systemen: Wechselwirkungen zwischen Sozial-, Gesundheits- und Klimadynamik (Christof Schütte)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
Kommentar
S. englische Beschreibung
-
19207101
Vorlesung
Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt:
Viele Probleme in den Naturwissenschaften werden durch Prozesse bestimmt, die auf verschiedenen Skalen ablaufen. Solche Probleme werden als Mehrskalenprobleme bezeichnet. Ein Beispiel für ein Mehrskalenproblem sind die partiellen Differentialgleichungen, die in der geophysikalischen Fluiddynamik Anwendung finden. Für die analytische Beschreibung der langsamen Skalen können Mittelungsmethoden verwendet werden. Diese Beschreibungen sind vorteilhaft bei der Anwendung numerischer Zeitschrittverfahren, da die gemittelten Gleichungen auf gröberen Zeitgittern gelöst werden können als die nicht gemittelten Gleichungen.
Das Hauptaugenmerk dieses Kurses liegt auf Mittelungsverfahren für partielle Differentialgleichungen, die Fluide beschreiben, und dem Design von parallelisierbaren, numerischen Zeitschrittverfahren, die auf dem Parareellen Verfahren basieren und die Mittelungsverfahren einbinden.
Anforderungen: Grundvorlesungen in Analysis, Grundvorlesungen Numerik
Literatur:
Wingate, B.A.; Rosemeier, J.; Haut, T., Mean Flow from Phase Averages in the 2D Boussinesq Equations. Atmosphere 2023, 14, 1523.
https://doi.org/10.3390/atmos14101523
T. Haut, B. Wingate, An asymptotic parallel-in-time method for highly oscillatory pde's, SIAM Journal on Scientific Computing, 36 (2014), pp.
A693-A713
J.-L. Lions, G. Turinici, A "parareal" in time discretization of PDE's, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332 (2001), pp. 661-668 Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer New York, NY, 2ed., 2000
-
19206402
Übung
Übung zu Numerik IV (Christof Schütte)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
-
19207102
Übung
Übung zu Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19206401
Vorlesung
-
Vertiefungsmodul: Masterseminar Differentialgeometrie
0280cA3.2-
19212211
Seminar
Seminar zu Themen der Geometrischen Analysis und der Differentialgeometrie (Elena Mäder-Baumdicker)
Zeit: Mi 15.10. 12:00-14:00, Mi 05.11. 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Ana I bis III, lineare Algebra I und II sowie mindestens einer der beiden Vorlesungen Differentialgeometrie I oder Differentialgleichungen I.
Kommentar
This seminar is intended for Bachelor's and Master's students with an interest in topics related to Geometric Analysis and Differential Geometry. Each semester, the seminar focuses on a different theme — examples include geometric variational problems, geometric flows, and geometric measure theory.
In the first meeting of the semester, students can express their interest in participating. In the second meeting, each participant selects a topic from a curated list. The presentations themselves will take place during a dedicated seminar week at the end of the term.
-
19214411
Seminar
Forschungsmodul: Differentialgeometrie (Konrad Polthier, Tillmann Kleiner)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
Kommentar
In diesem Seminar werden differentialgeometrische Themen anhand aktueller Forschungsarbeiten selbständig erarbeitet und im Vortrag vorgestellt.
Besonderer Schwerpunkt liegt auf der konkreten Umsetzung differentialgeometrischer Konzepte in Anwendungsszenarien und den dabei auftretenden Fragen der Diskretisierung und algorithmischen Umsetzung.Lernziele sind ein tieferes Verständnis differentialgeometrischer Konzepte, sowie Probleme und Lösungsstrategien bei ihrem praktischen Einsatz.
Vorkenntnisse: Differentialgeometrie I
-
19212211
Seminar
-
Vertiefungsmodul: Masterseminar Diskrete Geometrie
0280cA3.3-
19206111
Seminar
Forschungsmodul: Diskrete Geometrie (Giulia Codenotti)
Zeit: Termine siehe LV-Details (Erster Termin: 26.01.2026)
Ort: keine Angabe
Kommentar
In diesem Seminar geht es um Polytope und Punktgitter.
Das Seminar wird vermutlich großteils auf Englisch stattfinden.Literaturhinweise
Themenvergabe und speziellere Literaturangaben in der Vorbesprechung zum Seminar.
-
19206111
Seminar
-
Vertiefungsmodul: Masterseminar Numerik
0280cA3.6-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19226511
Seminar
Seminar Mehrskalenmethoden in molekularen Simulationen (Luigi Delle Site)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: Seminarraum in der Arnimallee 9
Zusätzl. Angaben / Voraussetzungen
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Kommentar
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Literaturhinweise
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19208111
Seminar
-
Vertiefungsmodul: Masterseminar Partielle Differentialgleichungen
0280cA3.7-
19247111
Seminar
Gewöhnliche Differentialgleichungen (Marita Thomas)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Gewöhnliche Differentialgleichungen treten in vielen Anwendungen aus der Physik, Chemie, Biologie oder den Wirtschaftwissenschaften auf. Dieses Seminar erweitert die aus der Analysis III Vorlesung bekannten Inhalte. Behandelt werden u.A. Eigenwertprobleme und Stabilitätstheorie.
-
19247111
Seminar
-
Vertiefungsmodul: Masterseminar Stochastik
0280cA3.8-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19208111
Seminar
-
Vertiefungsmodul: Masterseminar Topologie
0280cA3.9-
19223811
Seminar
Masterseminar Topologie "L^2-Betti Zahlen" (N.N.)
Zeit: Do 10:00-12:00 (Erster Termin: 16.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Grundwissen in Topologie und Gruppentheorie wird vorausgesetzt.
Kommentar
Die Euler Charakteristik von endlichen CW-Komplexen ist multiplikativ unter endlichen Überlagerungen und sie ist homotopie-invariant. Diese Eigenschaften können von unterschiedlichen Beschreibungen hergeleitet werden:
1. Als alternierende Summe der Anzahlen der Zellen, welche multiplikativ aber nicht homotopie-invariant sind.
2. Als alternierende Summe der Betti Zahlen, welche homotopie-invariant aber nicht multiplikativ sind. Die $n$-te Betti Zahl von $X$ ist die $\mathbb{Q}$-Dimension der Homologie $H_n(X;\mathbb{Q})$ mit rationalen Koeffizienten.
3. Als alternierende Summe der $L^2$-Betti Zahlen, welche die besten Eigenschaften beider Welten haben: sie sind multiplikativ und homotopie-invariant. Die $n$-te $L^2$-Betti Zahl von $X$ ist die von Neumann-Dimension der Homologie $H_n(X;\mathbb{\calN}\pi_1(X))$ mit geeigneten Koeffizienten.
$L^2$-Betti Zahlen sind bedeutsame topologische Invarianten, da sie Hindernisse sind für Abbildungs-Tori und $S^1$-Wirkungen. Sie haben außerdem Anwendungen in der Gruppentheorie, indem man die $L^2$-Betti Zahlen von klassifizierenden Räumen betrachtet. Darüber hinaus stehen $L^2$-Betti Zahlen in Verbindung zu berühmten offenen
Problemen, wie den Hopf und Singer Vermutungen zur Euler Charakteristik von Mannigfaltigkeiten, und der Kaplansky Vermutung zu Nullteilern in Gruppenringen.Nähere Informationen entnehmen Sie der Homepage des Seminars.
Literaturhinweise
This seminar will be an introduction to $L^2$-Betti numbers, following mostly
the book by Holger Kammeyer.
-
19223811
Seminar
-
Ergänzungsmodul: Ausgewählte Themen A
0280cA4.1-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202101
Vorlesung
Basismodul: Numerik II (Robert Gruhlke)
Zeit: Mo 12:00-14:00, Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.
Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS
Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)
-
19202601
Vorlesung
Differentialgeometrie I (Konrad Polthier)
Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Weitere Infos auf der Veranstaltungshomepage
Kommentar
Auswahl aus folgenden Themen:
- Kurven und Flächen im euklidischen Raum,
- Metriken und Riemann'sche Mannigfaltigkeiten,
- Oberflächenspannung und Krümmungsbegriffe,
- Vektorfelder, Tensoren, kovariante Ableitung,
- Geodätische Kurven, Exponentialabbildung,
- Satz von Gauß-Bonnet, Topologie,
- Verbindungen zur diskreten Differentialgeometrie.
Voraussetzungen:
Analysis I bis III und Lineare Algebra I und II
Literaturhinweise
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
-
19206201
Vorlesung
Basismodul: Topologie II (Pavle Blagojevic)
Zeit: Di 14:00-16:00, Do 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: Singuläre Homologie- und Kohomologietheorie mit Anwendungen, Homologie von CW-Komplexen, Grundbegriffe der Homotopietheorie
Literaturhinweise
Literatur
- Hatcher, Allen: Algebraic Topology; Cambridge University Press.
- http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- Lück, Wolfgang: Algebraische Topologie, Homologie und Mannigfaltigkeiten; Vieweg.
-
19212901
Vorlesung
Stochastik II (Felix Höfling)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzung: Stochastik I und Analysis I — III.
Kommentar
Inhalt:
- Grundlagen: bedingte Erwartungen; charakteristische Funktion; Konvergenzarten der Stochastik; gleichgradige Integrierbarkeit;
- Konstruktion stochastischer Prozesse und Beispiele: gaußsche Prozesse, Lévy-Prozesse, Brownsche Bewegung
- Martingale in diskreter Zeit: Konvergenz, Stoppsätze, Ungleichungen;
- Markovketten in diskreter und stetiger Zeit: Rekurrenz und Transienz, invariante Maße;
Literaturhinweise
- Klenke: Wahrscheinlichkeitstheorie
- Durrett: Probability. Theory and Examples.
Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
Further literature will be given during the lecture. -
19225101
Vorlesung
Weiche Materie: Mathematische Aspekte, Physikalische Modellierung und Computersimulation (Luigi Delle Site)
Zeit: Mo 12:00-14:00, Di 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: Die Veranstaltung findet im Seminarraum der Arnimallee 9 statt.
Zusätzl. Angaben / Voraussetzungen
Zielgruppe: Masterstudenten der Mathematik und Physik, die sich für mathematische Theorie und Computermodellierung von Soft Matter Systemen interessieren.
Anforderungen: Grundkenntnisse der statistischen Physik und der Dynamik, Computerprogrammierung
Kommentar
Programm
Polymerphysik: Struktur und Dynamik
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Biologische Membranen
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Einführung in Kolloide und Flüssigkristalle
- Theorie und Simulation
Einführung in die hydrodynamische Skala für große biologische Systeme:
- Beispiele sind z.B. Zelluläre Prozesse, Rote Blutkörperchen im Kapillarfluss, etc. (Theorie und Simulation)
Literaturhinweise
Basic Literature:
- Introduction to Polymer Physics by M. Doi
- Soft Matter Physics by M. Doi
- Biomembrane Frontiers: Nanostructures, Models, and the Design of Life (Handbook of Modern Biophysics) by von Thomas Jue, Subhash H. Risbud, Marjorie L. Longo, Roland Faller (Editors)
-
19234401
Vorlesung
Diskrete Mathematik II - Optimierung (Ralf Borndörfer)
Zeit: Mo 14:00-16:00, Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: Mo A6/SR 032 Seminarraum (Arnimallee 6), Do A7/SR 031 (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Anrechnung
Diese Veranstaltung kann als Diskrete Mathematik II (DM II) gewählt werden.
Bei gleichzeitiger Belegung von Diskrete Mathematik II - Extremale Kombinatorik kann einer der beiden Kurse als DM II und der andere als Ergänzungsmodul gewählt werden.
Sprache
Die VL findet auf Englisch statt.
Klausur
Die Klausur findet in der letzten Vorlesung statt. Die Nachklausur findet in der Woche vor dem Wiederbeginn der Vorlesungen statt.
Kommentar
Diese Vorlesung startet den Optimierungszweig der Diskreten Mathematik. Sie behandelt die Algorithmische Graphentheorie und die Lineare Optimierung.
Inhalt
- Komplexität: Komplexitätsmaße, Laufzeit von Algorithmen, die Klassen P und NP, NP-Vollständigkeit
- Matroide und Unabhängigkeitssysteme: Unabhängigkeitssysteme, Matroide, Bäume, Wälder, Orakel, Optimierung über Unabhängigkeitssystemen
- Kürzeste Wege: Nichtnegative Gewichte, allgemeine Gewichte, all pairs
- Netzwerflüsse: Das Max-Flow-Min-Cut Theorem, Augmentierende Wege, Minimalkostenflüsse, Transport- und Zuordnungsprobleme
- Polyeder: Seitenflächen, Dimensionsformel, Projektionen von Polyedern, Transformation, Polarität, Darstellungssätze.
- Grundlagen der Linearen Optimierung: Farkas Lemma, Dualitätssatz.
- Simplexalgorithmus: Basis, Degeneration, Basistausch, revidierter Simplexalgorithmus, Schranken, dualer Simplexalgorithmus, Postoptimierung, Numerik.
- Innere Punkte und Ellipsoidmethode: Grundlagen
Zielgruppe
Diese Veranstaltung richtet sich an Studierende der Mathematik mit Vorkenntnissen in Diskreter Mathematik I, Linearer Algebra und Analysis. Einige Übungsaufgaben erfordern den Einsatz eines Computers.
Literaturhinweise
M. Grötschel, Lineare Optimierung, eines der Vorlesungsskripte
V. Chvátal, Linear Programming, Freeman 1983
Additional
Garey & Johnson, Computers and Intractability, 1979 (Complexity Theory)
Bertsimas & Tsitsiklis, Introduction to Linear Optimization, 97 (Linear Programming)
Korte & Vygen, Combinatorial Optimization, 2006 (Flows, Shortest Paths, Matchings)
-
19242001
Vorlesung
Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Di 08:00-10:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: Di A6/SR 031 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Diese Veranstaltung baut auf dem Kursmaterial von Partielle Differentialgleichungen I des vorangegangenen Sommersemesters auf. Methoden für lineare partielle Differentialgleichungen werden vertieft und erweitert auf nichtlineare partielle Differentialgleichungen. Im Mittelpunkt der Vorlesung steht die Theorie monotoner und maximal monotoner Operatoren.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202102
Übung
Übung zu Basismodul: Numerik II (André-Alexander Zepernick)
Zeit: Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202602
Übung
Übung zu Differentialgeometrie I (Tillmann Kleiner, Konrad Polthier)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19206202
Übung
Übung zu Topologie II (Katarina Krivokuca)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19212902
Übung
Übung zu Stochastik II (Felix Höfling)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Inhalt
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
More precisely, the course will cover the following aspects of probability theory: - Measure theory and the Lebesgue integral
- Convergence of random variables and 0-1 laws
- Generating functions: branching processes and characteristic functions
- Markov chains
- Introduction to martingales
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
-
19225102
Übung
Übung zu Soft Matter: mathematical aspects, physical modeling and Computer Simulation (Luigi Delle Site)
Zeit: Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: SR A9
-
19234402
Übung
Übung zu Diskrete Mathematik II - Optimierung (N.N.)
Zeit: Mo 16:00-18:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19242002
Übung
Übungen zu Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Ergänzungsmodul: BMS ? Fridays
0280cA4.12-
19223111
Seminar
BMS-Freitage (Holger Reich)
Zeit: Fr 12.12. 14:00-18:00, Fr 30.01. 14:00-18:00 (Erster Termin: 12.12.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
The Friday colloquia of BMS represent a common meeting point for Berlin mathematics at Urania Berlin: a colloquium with broad emanation that permits an overview of large-scale connections and insights. In thematic series, the conversation is about “mathematics as a whole,” and we hope to be able to witness some breakthroughs.
Typically, there is a BMS colloquium every other Friday afternoon in the BMS Loft at Urania during term time. BMS Friday colloquia usually start at 2:15 pm. Tea and cookies are served before each talk at 1:00 pm.
More details: https://www.math-berlin.de/academics/bms-fridays
-
19223111
Seminar
-
Ergänzungsmodul: What is ??
0280cA4.13-
19217311
Seminar
Doktorandenseminar "Was ist eigentlich...?" / "What is...?" (Holger Reich)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
The "What is ...?" seminars are usually held before the BMS Friday seminar to complement the topic of the talk.
Zielgruppe: Anybody interested in mathematics is invited to attend the "What is ...?" seminars. This includes Bachelors, Masters, Diplom, and PhD students from any field, as well as researchers like Post-Docs.
Voraussetzungen: The speakers assume that the audience has at least a general knowledge of graduate-level mathematics.Kommentar
Inhalt: The "What is ...?" seminar is a 30-minute weekly seminar that concisely introduces terms and ideas that are fundamental to certain fields of mathematics but may not be familiar in others.
The vast mathematical landscape in Berlin welcomes mathematicians with diverse backgrounds to work side by side, yet their paths often only cross within their individual research groups. To encourage interdisciplinary cooperation and collaboration, the "What is ...?" seminar attempts to initiate contact by introducing essential vocabulary and foundational concepts of the numerous fields represented in Berlin. The casual atmosphere of the seminar invites the audience to ask many questions and the speakers to experiment with their presentation styles.
The location of the seminar rotates among the Urania, FU, TU, and HU. On the weeks when a BMS Friday takes place, the "What is ...?" seminar topic is arranged to coincide with the Friday talk acting as an introductory talk for the BMS Friday Colloquium. For a schedule of the talks and their locations, check the website. The website is updated frequently throughout the semester.Talks and more detailed information can be found here
Homepage: http://www.math.fu-berlin.de/w/Math/WhatIsSeminar
-
19217311
Seminar
-
Ergänzungsmodul: Ausgewählte Themen B
0280cA4.2-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202101
Vorlesung
Basismodul: Numerik II (Robert Gruhlke)
Zeit: Mo 12:00-14:00, Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.
Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS
Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)
-
19202601
Vorlesung
Differentialgeometrie I (Konrad Polthier)
Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Weitere Infos auf der Veranstaltungshomepage
Kommentar
Auswahl aus folgenden Themen:
- Kurven und Flächen im euklidischen Raum,
- Metriken und Riemann'sche Mannigfaltigkeiten,
- Oberflächenspannung und Krümmungsbegriffe,
- Vektorfelder, Tensoren, kovariante Ableitung,
- Geodätische Kurven, Exponentialabbildung,
- Satz von Gauß-Bonnet, Topologie,
- Verbindungen zur diskreten Differentialgeometrie.
Voraussetzungen:
Analysis I bis III und Lineare Algebra I und II
Literaturhinweise
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
-
19206201
Vorlesung
Basismodul: Topologie II (Pavle Blagojevic)
Zeit: Di 14:00-16:00, Do 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: Singuläre Homologie- und Kohomologietheorie mit Anwendungen, Homologie von CW-Komplexen, Grundbegriffe der Homotopietheorie
Literaturhinweise
Literatur
- Hatcher, Allen: Algebraic Topology; Cambridge University Press.
- http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- Lück, Wolfgang: Algebraische Topologie, Homologie und Mannigfaltigkeiten; Vieweg.
-
19212901
Vorlesung
Stochastik II (Felix Höfling)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzung: Stochastik I und Analysis I — III.
Kommentar
Inhalt:
- Grundlagen: bedingte Erwartungen; charakteristische Funktion; Konvergenzarten der Stochastik; gleichgradige Integrierbarkeit;
- Konstruktion stochastischer Prozesse und Beispiele: gaußsche Prozesse, Lévy-Prozesse, Brownsche Bewegung
- Martingale in diskreter Zeit: Konvergenz, Stoppsätze, Ungleichungen;
- Markovketten in diskreter und stetiger Zeit: Rekurrenz und Transienz, invariante Maße;
Literaturhinweise
- Klenke: Wahrscheinlichkeitstheorie
- Durrett: Probability. Theory and Examples.
Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
Further literature will be given during the lecture. -
19225101
Vorlesung
Weiche Materie: Mathematische Aspekte, Physikalische Modellierung und Computersimulation (Luigi Delle Site)
Zeit: Mo 12:00-14:00, Di 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: Die Veranstaltung findet im Seminarraum der Arnimallee 9 statt.
Zusätzl. Angaben / Voraussetzungen
Zielgruppe: Masterstudenten der Mathematik und Physik, die sich für mathematische Theorie und Computermodellierung von Soft Matter Systemen interessieren.
Anforderungen: Grundkenntnisse der statistischen Physik und der Dynamik, Computerprogrammierung
Kommentar
Programm
Polymerphysik: Struktur und Dynamik
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Biologische Membranen
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Einführung in Kolloide und Flüssigkristalle
- Theorie und Simulation
Einführung in die hydrodynamische Skala für große biologische Systeme:
- Beispiele sind z.B. Zelluläre Prozesse, Rote Blutkörperchen im Kapillarfluss, etc. (Theorie und Simulation)
Literaturhinweise
Basic Literature:
- Introduction to Polymer Physics by M. Doi
- Soft Matter Physics by M. Doi
- Biomembrane Frontiers: Nanostructures, Models, and the Design of Life (Handbook of Modern Biophysics) by von Thomas Jue, Subhash H. Risbud, Marjorie L. Longo, Roland Faller (Editors)
-
19234401
Vorlesung
Diskrete Mathematik II - Optimierung (Ralf Borndörfer)
Zeit: Mo 14:00-16:00, Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: Mo A6/SR 032 Seminarraum (Arnimallee 6), Do A7/SR 031 (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Anrechnung
Diese Veranstaltung kann als Diskrete Mathematik II (DM II) gewählt werden.
Bei gleichzeitiger Belegung von Diskrete Mathematik II - Extremale Kombinatorik kann einer der beiden Kurse als DM II und der andere als Ergänzungsmodul gewählt werden.
Sprache
Die VL findet auf Englisch statt.
Klausur
Die Klausur findet in der letzten Vorlesung statt. Die Nachklausur findet in der Woche vor dem Wiederbeginn der Vorlesungen statt.
Kommentar
Diese Vorlesung startet den Optimierungszweig der Diskreten Mathematik. Sie behandelt die Algorithmische Graphentheorie und die Lineare Optimierung.
Inhalt
- Komplexität: Komplexitätsmaße, Laufzeit von Algorithmen, die Klassen P und NP, NP-Vollständigkeit
- Matroide und Unabhängigkeitssysteme: Unabhängigkeitssysteme, Matroide, Bäume, Wälder, Orakel, Optimierung über Unabhängigkeitssystemen
- Kürzeste Wege: Nichtnegative Gewichte, allgemeine Gewichte, all pairs
- Netzwerflüsse: Das Max-Flow-Min-Cut Theorem, Augmentierende Wege, Minimalkostenflüsse, Transport- und Zuordnungsprobleme
- Polyeder: Seitenflächen, Dimensionsformel, Projektionen von Polyedern, Transformation, Polarität, Darstellungssätze.
- Grundlagen der Linearen Optimierung: Farkas Lemma, Dualitätssatz.
- Simplexalgorithmus: Basis, Degeneration, Basistausch, revidierter Simplexalgorithmus, Schranken, dualer Simplexalgorithmus, Postoptimierung, Numerik.
- Innere Punkte und Ellipsoidmethode: Grundlagen
Zielgruppe
Diese Veranstaltung richtet sich an Studierende der Mathematik mit Vorkenntnissen in Diskreter Mathematik I, Linearer Algebra und Analysis. Einige Übungsaufgaben erfordern den Einsatz eines Computers.
Literaturhinweise
M. Grötschel, Lineare Optimierung, eines der Vorlesungsskripte
V. Chvátal, Linear Programming, Freeman 1983
Additional
Garey & Johnson, Computers and Intractability, 1979 (Complexity Theory)
Bertsimas & Tsitsiklis, Introduction to Linear Optimization, 97 (Linear Programming)
Korte & Vygen, Combinatorial Optimization, 2006 (Flows, Shortest Paths, Matchings)
-
19242001
Vorlesung
Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Di 08:00-10:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: Di A6/SR 031 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Diese Veranstaltung baut auf dem Kursmaterial von Partielle Differentialgleichungen I des vorangegangenen Sommersemesters auf. Methoden für lineare partielle Differentialgleichungen werden vertieft und erweitert auf nichtlineare partielle Differentialgleichungen. Im Mittelpunkt der Vorlesung steht die Theorie monotoner und maximal monotoner Operatoren.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202102
Übung
Übung zu Basismodul: Numerik II (André-Alexander Zepernick)
Zeit: Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202602
Übung
Übung zu Differentialgeometrie I (Tillmann Kleiner, Konrad Polthier)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19206202
Übung
Übung zu Topologie II (Katarina Krivokuca)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19212902
Übung
Übung zu Stochastik II (Felix Höfling)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Inhalt
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
More precisely, the course will cover the following aspects of probability theory: - Measure theory and the Lebesgue integral
- Convergence of random variables and 0-1 laws
- Generating functions: branching processes and characteristic functions
- Markov chains
- Introduction to martingales
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
-
19225102
Übung
Übung zu Soft Matter: mathematical aspects, physical modeling and Computer Simulation (Luigi Delle Site)
Zeit: Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: SR A9
-
19234402
Übung
Übung zu Diskrete Mathematik II - Optimierung (N.N.)
Zeit: Mo 16:00-18:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19242002
Übung
Übungen zu Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Ergänzungsmodul: Ausgewählte Themen C
0280cA4.3-
19202001
Vorlesung
Diskrete Geometrie I (Christian Haase)
Zeit: Di 10:00-12:00, Mi 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Gute Kenntnisse der linearen Algebra werden vorausgesetzt. Vorbildung in Kombinatorik und Geometrie sind hilfreich.
Kommentar
Präsenz in den Übungen mittwochs ist Pflicht.
Das ist die erste Vorlesung in einem Zyklus von drei Vorlesungen in diskreter Geometrie. Das Ziel dieser Vorlesung ist es, mit diskreten Strukturen und verschiedenen Beweistechniken vertraut zu werden. Der Inhalt wird aus einer Auswahl aus den folgenden Themen bestehen:
Polyeder und polyedrische Komplexe
Konfigurationen von Punkten, Hyperebenen und Unterräumen
Unterteilungen und Triangulierungen
Theorie von Polytopen
Darstellungen und der Satz von Minkowski-Weyl
Polarität, einfache und simpliziale Polytope, Schälbarkeit
Schälbarkeit, Seitenverbände, f-Vektoren, Euler- und Dehn-Sommerville Gleichungen
Graphen, Durchmesser, Hirsch Vermutung
Geometrie linearer Programmierung
Lineare Programme, Simplex-Algorithmus, LP Dualität
Kombinatorische Geometrie, geometrische Kombinatorik
Arrangements von Punkten und Geraden, Sylvester-Gallai, Erdös-Szekeres
Arrangements, Zonotope, zonotopale Kachelungen, orientierte Matroide
Beispiele, Beispiele, Beispiele
Reguläre Polyope, zentralsymmetrische Polytope
Extremale Polytope, zyklische/nachbarschaftliche Polytope, gestapelte Polytope
Kombinatorische Optimierung und 0/1-Polytope
Literaturhinweise
- G.M. Ziegler "Lectures in Polytopes"
- J. Matousek "Lectures on Discrete Geometry"
- Further literature will be announced in class.
-
19202101
Vorlesung
Basismodul: Numerik II (Robert Gruhlke)
Zeit: Mo 12:00-14:00, Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Description: Extending basic knowledge on odes from Numerik I, we first concentrate on one-step methods for stiff and differential-algebraic systems and then discuss Hamiltonian systems. In the second part of the lecture we consider the iterative solution of large linear systems.
Target Audience: Students of Bachelor and Master courses in Mathematics and of BMS
Prerequisites: Basics of calculus (Analysis I, II) linear algebra (Lineare Algebra I, II) and numerical analysis (Numerik I)
-
19202601
Vorlesung
Differentialgeometrie I (Konrad Polthier)
Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: KöLu24-26/SR 006 Neuro/Mathe (Königin-Luise-Str. 24 / 26)
Zusätzl. Angaben / Voraussetzungen
Weitere Infos auf der Veranstaltungshomepage
Kommentar
Auswahl aus folgenden Themen:
- Kurven und Flächen im euklidischen Raum,
- Metriken und Riemann'sche Mannigfaltigkeiten,
- Oberflächenspannung und Krümmungsbegriffe,
- Vektorfelder, Tensoren, kovariante Ableitung,
- Geodätische Kurven, Exponentialabbildung,
- Satz von Gauß-Bonnet, Topologie,
- Verbindungen zur diskreten Differentialgeometrie.
Voraussetzungen:
Analysis I bis III und Lineare Algebra I und II
Literaturhinweise
Literature
- W. Kühnel: Differentialgeometrie:Kurven - Flächen - Mannigfaltigkeiten, Springer, 2012
- M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall
- J.-H. Eschenburg, J. Jost: Differentialgeometrie und Minimalflächen, Springer, 2014
- C. Bär: Elementare Differentialgeometrie, de Gruyter, 2001
-
19206201
Vorlesung
Basismodul: Topologie II (Pavle Blagojevic)
Zeit: Di 14:00-16:00, Do 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: Singuläre Homologie- und Kohomologietheorie mit Anwendungen, Homologie von CW-Komplexen, Grundbegriffe der Homotopietheorie
Literaturhinweise
Literatur
- Hatcher, Allen: Algebraic Topology; Cambridge University Press.
- http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- Lück, Wolfgang: Algebraische Topologie, Homologie und Mannigfaltigkeiten; Vieweg.
-
19212901
Vorlesung
Stochastik II (Felix Höfling)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzung: Stochastik I und Analysis I — III.
Kommentar
Inhalt:
- Grundlagen: bedingte Erwartungen; charakteristische Funktion; Konvergenzarten der Stochastik; gleichgradige Integrierbarkeit;
- Konstruktion stochastischer Prozesse und Beispiele: gaußsche Prozesse, Lévy-Prozesse, Brownsche Bewegung
- Martingale in diskreter Zeit: Konvergenz, Stoppsätze, Ungleichungen;
- Markovketten in diskreter und stetiger Zeit: Rekurrenz und Transienz, invariante Maße;
Literaturhinweise
- Klenke: Wahrscheinlichkeitstheorie
- Durrett: Probability. Theory and Examples.
Weitere Literatur wird im Lauf der Vorlesung bekannt gegeben.
Further literature will be given during the lecture. -
19225101
Vorlesung
Weiche Materie: Mathematische Aspekte, Physikalische Modellierung und Computersimulation (Luigi Delle Site)
Zeit: Mo 12:00-14:00, Di 12:00-14:00 (Erster Termin: 14.10.2025)
Ort: Die Veranstaltung findet im Seminarraum der Arnimallee 9 statt.
Zusätzl. Angaben / Voraussetzungen
Zielgruppe: Masterstudenten der Mathematik und Physik, die sich für mathematische Theorie und Computermodellierung von Soft Matter Systemen interessieren.
Anforderungen: Grundkenntnisse der statistischen Physik und der Dynamik, Computerprogrammierung
Kommentar
Programm
Polymerphysik: Struktur und Dynamik
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Biologische Membranen
- (a) Theoretische/analytische Ansätze
- (b) Physikalische und chemische Modellierung
- (c) Simulation
Einführung in Kolloide und Flüssigkristalle
- Theorie und Simulation
Einführung in die hydrodynamische Skala für große biologische Systeme:
- Beispiele sind z.B. Zelluläre Prozesse, Rote Blutkörperchen im Kapillarfluss, etc. (Theorie und Simulation)
Literaturhinweise
Basic Literature:
- Introduction to Polymer Physics by M. Doi
- Soft Matter Physics by M. Doi
- Biomembrane Frontiers: Nanostructures, Models, and the Design of Life (Handbook of Modern Biophysics) by von Thomas Jue, Subhash H. Risbud, Marjorie L. Longo, Roland Faller (Editors)
-
19234401
Vorlesung
Diskrete Mathematik II - Optimierung (Ralf Borndörfer)
Zeit: Mo 14:00-16:00, Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: Mo A6/SR 032 Seminarraum (Arnimallee 6), Do A7/SR 031 (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Anrechnung
Diese Veranstaltung kann als Diskrete Mathematik II (DM II) gewählt werden.
Bei gleichzeitiger Belegung von Diskrete Mathematik II - Extremale Kombinatorik kann einer der beiden Kurse als DM II und der andere als Ergänzungsmodul gewählt werden.
Sprache
Die VL findet auf Englisch statt.
Klausur
Die Klausur findet in der letzten Vorlesung statt. Die Nachklausur findet in der Woche vor dem Wiederbeginn der Vorlesungen statt.
Kommentar
Diese Vorlesung startet den Optimierungszweig der Diskreten Mathematik. Sie behandelt die Algorithmische Graphentheorie und die Lineare Optimierung.
Inhalt
- Komplexität: Komplexitätsmaße, Laufzeit von Algorithmen, die Klassen P und NP, NP-Vollständigkeit
- Matroide und Unabhängigkeitssysteme: Unabhängigkeitssysteme, Matroide, Bäume, Wälder, Orakel, Optimierung über Unabhängigkeitssystemen
- Kürzeste Wege: Nichtnegative Gewichte, allgemeine Gewichte, all pairs
- Netzwerflüsse: Das Max-Flow-Min-Cut Theorem, Augmentierende Wege, Minimalkostenflüsse, Transport- und Zuordnungsprobleme
- Polyeder: Seitenflächen, Dimensionsformel, Projektionen von Polyedern, Transformation, Polarität, Darstellungssätze.
- Grundlagen der Linearen Optimierung: Farkas Lemma, Dualitätssatz.
- Simplexalgorithmus: Basis, Degeneration, Basistausch, revidierter Simplexalgorithmus, Schranken, dualer Simplexalgorithmus, Postoptimierung, Numerik.
- Innere Punkte und Ellipsoidmethode: Grundlagen
Zielgruppe
Diese Veranstaltung richtet sich an Studierende der Mathematik mit Vorkenntnissen in Diskreter Mathematik I, Linearer Algebra und Analysis. Einige Übungsaufgaben erfordern den Einsatz eines Computers.
Literaturhinweise
M. Grötschel, Lineare Optimierung, eines der Vorlesungsskripte
V. Chvátal, Linear Programming, Freeman 1983
Additional
Garey & Johnson, Computers and Intractability, 1979 (Complexity Theory)
Bertsimas & Tsitsiklis, Introduction to Linear Optimization, 97 (Linear Programming)
Korte & Vygen, Combinatorial Optimization, 2006 (Flows, Shortest Paths, Matchings)
-
19242001
Vorlesung
Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Di 08:00-10:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: Di A6/SR 031 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Diese Veranstaltung baut auf dem Kursmaterial von Partielle Differentialgleichungen I des vorangegangenen Sommersemesters auf. Methoden für lineare partielle Differentialgleichungen werden vertieft und erweitert auf nichtlineare partielle Differentialgleichungen. Im Mittelpunkt der Vorlesung steht die Theorie monotoner und maximal monotoner Operatoren.
-
19202002
Übung
Übung zu Diskrete Geometrie I (Sofia Garzón Mora, Christian Haase)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19202102
Übung
Übung zu Basismodul: Numerik II (André-Alexander Zepernick)
Zeit: Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202602
Übung
Übung zu Differentialgeometrie I (Tillmann Kleiner, Konrad Polthier)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19206202
Übung
Übung zu Topologie II (Katarina Krivokuca)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19212902
Übung
Übung zu Stochastik II (Felix Höfling)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Inhalt
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
More precisely, the course will cover the following aspects of probability theory: - Measure theory and the Lebesgue integral
- Convergence of random variables and 0-1 laws
- Generating functions: branching processes and characteristic functions
- Markov chains
- Introduction to martingales
- This course is the sequel of the course of Stochastics I. The main objective is to go beyond the first principles in probability theory by introducing the general language of measure theory, and the application of this framework in a wide variety of probabilistic scenarios.
-
19225102
Übung
Übung zu Soft Matter: mathematical aspects, physical modeling and Computer Simulation (Luigi Delle Site)
Zeit: Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: SR A9
-
19234402
Übung
Übung zu Diskrete Mathematik II - Optimierung (N.N.)
Zeit: Mo 16:00-18:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19242002
Übung
Übungen zu Partielle Differentialgleichungen II (Erica Ipocoana)
Zeit: Do 12:00-14:00 (Erster Termin: 16.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19202001
Vorlesung
-
Ergänzungsmodul: Spezielle Aspekte A
0280cA4.4-
19205901
Vorlesung
Aufbaumodul: Diskrete Geometrie III (Ansgar Freyer)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Die Zielgruppe sind Studenten mit einem soliden Hintergrund in diskreter Geometrie und/oder konvexer Geometrie (en par mit Discrete Geometry I & II). Die Themen dieses Kurses sind fortgeschrittene Themen in diskreter Geometrie, die Anwendungen und Inkarnationen in Differentialgeometrie, Topologie, Kombinatorik und algebraischer Geometrie finden. Anforderungen: Vorzugsweise Diskrete Geometrie I und II.
Kommentar
Dies ist der dritte Teil der Vorlesungsreihe Diskrete Geometrie. Die Vorlesung wird voraussichtlich auf Englisch gehalten werden. Daher folgt eine Beschreibung des Inhalts auf Englisch. This is the third in a series of three courses on discrete geometry. This advanced course will cover a selection of the following topics (depending on the interests of the audience): 1. Oriented Matroids along the lines of the book Oriented Matroids by Björner, Las Vergnas, Sturmfels, White, and Ziegler; and/or 2. Triangulations along the lines of the book Triangulations by de Loera, Rambau, and Santos; and/or 3. Discriminants and tropical geometry along the lines of the book Discriminants, Resultants, and multidimensional determinants by Gelfand, Kapranov, and Zelevinsky; and/or 4. Combinatorics and commutative algebra along the lines of the book Combinatorics and commutative algebra by Stanley.
Literaturhinweise
Will be announced in class.
-
19206401
Vorlesung
Numerik IV: Koevolution von komplexen Systemen: Wechselwirkungen zwischen Sozial-, Gesundheits- und Klimadynamik (Christof Schütte)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
Kommentar
S. englische Beschreibung
-
19207101
Vorlesung
Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt:
Viele Probleme in den Naturwissenschaften werden durch Prozesse bestimmt, die auf verschiedenen Skalen ablaufen. Solche Probleme werden als Mehrskalenprobleme bezeichnet. Ein Beispiel für ein Mehrskalenproblem sind die partiellen Differentialgleichungen, die in der geophysikalischen Fluiddynamik Anwendung finden. Für die analytische Beschreibung der langsamen Skalen können Mittelungsmethoden verwendet werden. Diese Beschreibungen sind vorteilhaft bei der Anwendung numerischer Zeitschrittverfahren, da die gemittelten Gleichungen auf gröberen Zeitgittern gelöst werden können als die nicht gemittelten Gleichungen.
Das Hauptaugenmerk dieses Kurses liegt auf Mittelungsverfahren für partielle Differentialgleichungen, die Fluide beschreiben, und dem Design von parallelisierbaren, numerischen Zeitschrittverfahren, die auf dem Parareellen Verfahren basieren und die Mittelungsverfahren einbinden.
Anforderungen: Grundvorlesungen in Analysis, Grundvorlesungen Numerik
Literatur:
Wingate, B.A.; Rosemeier, J.; Haut, T., Mean Flow from Phase Averages in the 2D Boussinesq Equations. Atmosphere 2023, 14, 1523.
https://doi.org/10.3390/atmos14101523
T. Haut, B. Wingate, An asymptotic parallel-in-time method for highly oscillatory pde's, SIAM Journal on Scientific Computing, 36 (2014), pp.
A693-A713
J.-L. Lions, G. Turinici, A "parareal" in time discretization of PDE's, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332 (2001), pp. 661-668 Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer New York, NY, 2ed., 2000
-
19222301
Vorlesung
Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mo 12:00-14:00 (Erster Termin: 03.11.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: eine Auswahl der Themen
- Eigenschaften von Morphismen (eigentlich, projektiv, glatt)
- Divisoren
- (quasi-)cohärente Garben
- Kohomologie
- Hilbert-Funktion
weitere Eigenschaften von Morphismen (eigentlich, ganz, regulär, glatt, étale, ...)
- Grothendieck Topologien
- cohomology (Čech, étale, ...)
Literaturhinweise
For example: Introduction to Schemes, Geir Ellingsrud and John Christian Otten
-
19235101
Vorlesung
Funktionen- und Distributionenräume (N.N.)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Prerequisits: Analysis I — III, Linear Algebra I, II.
Recommended: Functional Analysis.Kommentar
In diesem Kurs betrachten wir Funktionenräume und allgemeiner Räume von Distributionen, d.h. von verallgemeinerten Funktionen. Da alle Distributionen im Gegensatz zu Funktionen differenzierbar sind, spielen sie eine wichtige Rolle in der Theorie der partiellen Differentialgleichungen, auf die wir im Laufe des Kurses noch öfter zurückkommen werden. Wir betrachten:
Distributionenräume und ihr Begriff der Konvergenz (auf allgemeinen Gebieten)
Sobolevräume (auf allgemeinen Gebieten)
Temperierte Distributionen und die Fourier-Transformation (auf R^d)
Besovräume (auf R^d)
Bony's Para- und Resonanzprodukte
Literaturhinweise
There will be lecture notes.
-
19205902
Übung
Übung zu Aufbaumodul Diskrete Geometrie III (Ansgar Freyer)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
-
19206402
Übung
Übung zu Numerik IV (Christof Schütte)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
-
19207102
Übung
Übung zu Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19222302
Übung
Übung zu Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mi 10:00-12:00 (Erster Termin: 29.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19235102
Übung
Ü: Funktion- und Distributionsräume (Willem Van Zuijlen)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
-
19205901
Vorlesung
-
Ergänzungsmodul: Spezielle Aspekte B
0280cA4.5-
19205901
Vorlesung
Aufbaumodul: Diskrete Geometrie III (Ansgar Freyer)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Die Zielgruppe sind Studenten mit einem soliden Hintergrund in diskreter Geometrie und/oder konvexer Geometrie (en par mit Discrete Geometry I & II). Die Themen dieses Kurses sind fortgeschrittene Themen in diskreter Geometrie, die Anwendungen und Inkarnationen in Differentialgeometrie, Topologie, Kombinatorik und algebraischer Geometrie finden. Anforderungen: Vorzugsweise Diskrete Geometrie I und II.
Kommentar
Dies ist der dritte Teil der Vorlesungsreihe Diskrete Geometrie. Die Vorlesung wird voraussichtlich auf Englisch gehalten werden. Daher folgt eine Beschreibung des Inhalts auf Englisch. This is the third in a series of three courses on discrete geometry. This advanced course will cover a selection of the following topics (depending on the interests of the audience): 1. Oriented Matroids along the lines of the book Oriented Matroids by Björner, Las Vergnas, Sturmfels, White, and Ziegler; and/or 2. Triangulations along the lines of the book Triangulations by de Loera, Rambau, and Santos; and/or 3. Discriminants and tropical geometry along the lines of the book Discriminants, Resultants, and multidimensional determinants by Gelfand, Kapranov, and Zelevinsky; and/or 4. Combinatorics and commutative algebra along the lines of the book Combinatorics and commutative algebra by Stanley.
Literaturhinweise
Will be announced in class.
-
19206401
Vorlesung
Numerik IV: Koevolution von komplexen Systemen: Wechselwirkungen zwischen Sozial-, Gesundheits- und Klimadynamik (Christof Schütte)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
Kommentar
S. englische Beschreibung
-
19207101
Vorlesung
Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt:
Viele Probleme in den Naturwissenschaften werden durch Prozesse bestimmt, die auf verschiedenen Skalen ablaufen. Solche Probleme werden als Mehrskalenprobleme bezeichnet. Ein Beispiel für ein Mehrskalenproblem sind die partiellen Differentialgleichungen, die in der geophysikalischen Fluiddynamik Anwendung finden. Für die analytische Beschreibung der langsamen Skalen können Mittelungsmethoden verwendet werden. Diese Beschreibungen sind vorteilhaft bei der Anwendung numerischer Zeitschrittverfahren, da die gemittelten Gleichungen auf gröberen Zeitgittern gelöst werden können als die nicht gemittelten Gleichungen.
Das Hauptaugenmerk dieses Kurses liegt auf Mittelungsverfahren für partielle Differentialgleichungen, die Fluide beschreiben, und dem Design von parallelisierbaren, numerischen Zeitschrittverfahren, die auf dem Parareellen Verfahren basieren und die Mittelungsverfahren einbinden.
Anforderungen: Grundvorlesungen in Analysis, Grundvorlesungen Numerik
Literatur:
Wingate, B.A.; Rosemeier, J.; Haut, T., Mean Flow from Phase Averages in the 2D Boussinesq Equations. Atmosphere 2023, 14, 1523.
https://doi.org/10.3390/atmos14101523
T. Haut, B. Wingate, An asymptotic parallel-in-time method for highly oscillatory pde's, SIAM Journal on Scientific Computing, 36 (2014), pp.
A693-A713
J.-L. Lions, G. Turinici, A "parareal" in time discretization of PDE's, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332 (2001), pp. 661-668 Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer New York, NY, 2ed., 2000
-
19222301
Vorlesung
Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mo 12:00-14:00 (Erster Termin: 03.11.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: eine Auswahl der Themen
- Eigenschaften von Morphismen (eigentlich, projektiv, glatt)
- Divisoren
- (quasi-)cohärente Garben
- Kohomologie
- Hilbert-Funktion
weitere Eigenschaften von Morphismen (eigentlich, ganz, regulär, glatt, étale, ...)
- Grothendieck Topologien
- cohomology (Čech, étale, ...)
Literaturhinweise
For example: Introduction to Schemes, Geir Ellingsrud and John Christian Otten
-
19235101
Vorlesung
Funktionen- und Distributionenräume (N.N.)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Prerequisits: Analysis I — III, Linear Algebra I, II.
Recommended: Functional Analysis.Kommentar
In diesem Kurs betrachten wir Funktionenräume und allgemeiner Räume von Distributionen, d.h. von verallgemeinerten Funktionen. Da alle Distributionen im Gegensatz zu Funktionen differenzierbar sind, spielen sie eine wichtige Rolle in der Theorie der partiellen Differentialgleichungen, auf die wir im Laufe des Kurses noch öfter zurückkommen werden. Wir betrachten:
Distributionenräume und ihr Begriff der Konvergenz (auf allgemeinen Gebieten)
Sobolevräume (auf allgemeinen Gebieten)
Temperierte Distributionen und die Fourier-Transformation (auf R^d)
Besovräume (auf R^d)
Bony's Para- und Resonanzprodukte
Literaturhinweise
There will be lecture notes.
-
19205902
Übung
Übung zu Aufbaumodul Diskrete Geometrie III (Ansgar Freyer)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
-
19206402
Übung
Übung zu Numerik IV (Christof Schütte)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
-
19207102
Übung
Übung zu Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19222302
Übung
Übung zu Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mi 10:00-12:00 (Erster Termin: 29.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19235102
Übung
Ü: Funktion- und Distributionsräume (Willem Van Zuijlen)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
-
19205901
Vorlesung
-
Ergänzungsmodul: Spezielle Aspekte C
0280cA4.6-
19205901
Vorlesung
Aufbaumodul: Diskrete Geometrie III (Ansgar Freyer)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Die Zielgruppe sind Studenten mit einem soliden Hintergrund in diskreter Geometrie und/oder konvexer Geometrie (en par mit Discrete Geometry I & II). Die Themen dieses Kurses sind fortgeschrittene Themen in diskreter Geometrie, die Anwendungen und Inkarnationen in Differentialgeometrie, Topologie, Kombinatorik und algebraischer Geometrie finden. Anforderungen: Vorzugsweise Diskrete Geometrie I und II.
Kommentar
Dies ist der dritte Teil der Vorlesungsreihe Diskrete Geometrie. Die Vorlesung wird voraussichtlich auf Englisch gehalten werden. Daher folgt eine Beschreibung des Inhalts auf Englisch. This is the third in a series of three courses on discrete geometry. This advanced course will cover a selection of the following topics (depending on the interests of the audience): 1. Oriented Matroids along the lines of the book Oriented Matroids by Björner, Las Vergnas, Sturmfels, White, and Ziegler; and/or 2. Triangulations along the lines of the book Triangulations by de Loera, Rambau, and Santos; and/or 3. Discriminants and tropical geometry along the lines of the book Discriminants, Resultants, and multidimensional determinants by Gelfand, Kapranov, and Zelevinsky; and/or 4. Combinatorics and commutative algebra along the lines of the book Combinatorics and commutative algebra by Stanley.
Literaturhinweise
Will be announced in class.
-
19206401
Vorlesung
Numerik IV: Koevolution von komplexen Systemen: Wechselwirkungen zwischen Sozial-, Gesundheits- und Klimadynamik (Christof Schütte)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
Kommentar
S. englische Beschreibung
-
19207101
Vorlesung
Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
Kommentar
Inhalt:
Viele Probleme in den Naturwissenschaften werden durch Prozesse bestimmt, die auf verschiedenen Skalen ablaufen. Solche Probleme werden als Mehrskalenprobleme bezeichnet. Ein Beispiel für ein Mehrskalenproblem sind die partiellen Differentialgleichungen, die in der geophysikalischen Fluiddynamik Anwendung finden. Für die analytische Beschreibung der langsamen Skalen können Mittelungsmethoden verwendet werden. Diese Beschreibungen sind vorteilhaft bei der Anwendung numerischer Zeitschrittverfahren, da die gemittelten Gleichungen auf gröberen Zeitgittern gelöst werden können als die nicht gemittelten Gleichungen.
Das Hauptaugenmerk dieses Kurses liegt auf Mittelungsverfahren für partielle Differentialgleichungen, die Fluide beschreiben, und dem Design von parallelisierbaren, numerischen Zeitschrittverfahren, die auf dem Parareellen Verfahren basieren und die Mittelungsverfahren einbinden.
Anforderungen: Grundvorlesungen in Analysis, Grundvorlesungen Numerik
Literatur:
Wingate, B.A.; Rosemeier, J.; Haut, T., Mean Flow from Phase Averages in the 2D Boussinesq Equations. Atmosphere 2023, 14, 1523.
https://doi.org/10.3390/atmos14101523
T. Haut, B. Wingate, An asymptotic parallel-in-time method for highly oscillatory pde's, SIAM Journal on Scientific Computing, 36 (2014), pp.
A693-A713
J.-L. Lions, G. Turinici, A "parareal" in time discretization of PDE's, Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332 (2001), pp. 661-668 Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Springer New York, NY, 2ed., 2000
-
19222301
Vorlesung
Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mo 12:00-14:00 (Erster Termin: 03.11.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Inhalt: eine Auswahl der Themen
- Eigenschaften von Morphismen (eigentlich, projektiv, glatt)
- Divisoren
- (quasi-)cohärente Garben
- Kohomologie
- Hilbert-Funktion
weitere Eigenschaften von Morphismen (eigentlich, ganz, regulär, glatt, étale, ...)
- Grothendieck Topologien
- cohomology (Čech, étale, ...)
Literaturhinweise
For example: Introduction to Schemes, Geir Ellingsrud and John Christian Otten
-
19235101
Vorlesung
Funktionen- und Distributionenräume (N.N.)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Zusätzl. Angaben / Voraussetzungen
Prerequisits: Analysis I — III, Linear Algebra I, II.
Recommended: Functional Analysis.Kommentar
In diesem Kurs betrachten wir Funktionenräume und allgemeiner Räume von Distributionen, d.h. von verallgemeinerten Funktionen. Da alle Distributionen im Gegensatz zu Funktionen differenzierbar sind, spielen sie eine wichtige Rolle in der Theorie der partiellen Differentialgleichungen, auf die wir im Laufe des Kurses noch öfter zurückkommen werden. Wir betrachten:
Distributionenräume und ihr Begriff der Konvergenz (auf allgemeinen Gebieten)
Sobolevräume (auf allgemeinen Gebieten)
Temperierte Distributionen und die Fourier-Transformation (auf R^d)
Besovräume (auf R^d)
Bony's Para- und Resonanzprodukte
Literaturhinweise
There will be lecture notes.
-
19205902
Übung
Übung zu Aufbaumodul Diskrete Geometrie III (Ansgar Freyer)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
-
19206402
Übung
Übung zu Numerik IV (Christof Schütte)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: keine Angabe
-
19207102
Übung
Übung zu Partielle Differentialgleichungen mit multiplen Skalen: Theorie und Numerik (Juliane Rosemeier)
Zeit: Mi 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19222302
Übung
Übung zu Aufbaumodul: Algebra III (Holger Reich)
Zeit: Mi 10:00-12:00 (Erster Termin: 29.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
-
19235102
Übung
Ü: Funktion- und Distributionsräume (Willem Van Zuijlen)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
-
19205901
Vorlesung
-
Ergänzungsmodul: Aktuelle Forschungsthemen A
0280cA4.7-
19206111
Seminar
Forschungsmodul: Diskrete Geometrie (Giulia Codenotti)
Zeit: Termine siehe LV-Details (Erster Termin: 26.01.2026)
Ort: keine Angabe
Kommentar
In diesem Seminar geht es um Polytope und Punktgitter.
Das Seminar wird vermutlich großteils auf Englisch stattfinden.Literaturhinweise
Themenvergabe und speziellere Literaturangaben in der Vorbesprechung zum Seminar.
-
19207219
Seminaristische Übung
Formale Beweisverifikation (Christoph Spiegel, Silas Rathke)
Zeit: -
Ort: keine Angabe
Kommentar
Dieser zweiwöchige Blockkurs an der Freien Universität Berlin bietet eine praxisorientierte Einführung in die formale Beweisverifikation mit dem Theorembeweiser Lean. Die Vorlesungen finden am Zuse-Institut Berlin (ZIB) statt; die Räume für die Tutorien an der FU werden nach Anmeldestand bekanntgegeben. Der Kurs steht allen offen (auch Gasthörer*innen); bei den Tutorien haben FU-Studierende mit ABV-Bedarf Priorität. Bitte einen eigenen Laptop mitbringen. Erwartet werden solide Kenntnisse aus Analysis I und Linearer Algebra I; Programmierkenntnisse sind nicht erforderlich, eine technische Affinität ist jedoch hilfreich. Lehrsprache ist Englisch (Beiträge auf Deutsch sind willkommen). Alle Informationen und Materialien — u. a. zu Logik, Mengenlehre, natürlichen Zahlen, Unendlichkeit der Primzahlen und Grundzügen der Graphentheorie — finden sich auf der GitHub-Seite des Kurses.
Für eine Anrechnung im Master wird der Kurs um differenzierte Übungen und erweiterte Prüfungsleistungen ergänzt. Die Übungsaufgaben sind dreistufig: grundlegende Aufgaben (mit gut lesbaren Beweisvorlagen), vertiefte Aufgaben auf Master-Niveau sowie optionale Stretch-Aufgaben; während der Übungen erfolgt Betreuung und eine informelle Fortschrittsrückmeldung. Die Abschlussprüfung ist eine schriftliche Klausur, die sowohl Konzeptverständnis als auch praktische Lean-Fertigkeiten prüft. Zusätzlich bearbeiten Master-Studierende ein Lean-Formalisierungsprojekt (einzeln oder zu zweit) und präsentieren es in einem mündlichen Prüfungsgespräch ein bis zwei Wochen nach Kursende; die M.Sc.-Note ergibt sich aus Klausur und Projekt.
-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19212211
Seminar
Seminar zu Themen der Geometrischen Analysis und der Differentialgeometrie (Elena Mäder-Baumdicker)
Zeit: Mi 15.10. 12:00-14:00, Mi 05.11. 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Ana I bis III, lineare Algebra I und II sowie mindestens einer der beiden Vorlesungen Differentialgeometrie I oder Differentialgleichungen I.
Kommentar
This seminar is intended for Bachelor's and Master's students with an interest in topics related to Geometric Analysis and Differential Geometry. Each semester, the seminar focuses on a different theme — examples include geometric variational problems, geometric flows, and geometric measure theory.
In the first meeting of the semester, students can express their interest in participating. In the second meeting, each participant selects a topic from a curated list. The presentations themselves will take place during a dedicated seminar week at the end of the term.
-
19214411
Seminar
Forschungsmodul: Differentialgeometrie (Konrad Polthier, Tillmann Kleiner)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
Kommentar
In diesem Seminar werden differentialgeometrische Themen anhand aktueller Forschungsarbeiten selbständig erarbeitet und im Vortrag vorgestellt.
Besonderer Schwerpunkt liegt auf der konkreten Umsetzung differentialgeometrischer Konzepte in Anwendungsszenarien und den dabei auftretenden Fragen der Diskretisierung und algorithmischen Umsetzung.Lernziele sind ein tieferes Verständnis differentialgeometrischer Konzepte, sowie Probleme und Lösungsstrategien bei ihrem praktischen Einsatz.
Vorkenntnisse: Differentialgeometrie I
-
19223811
Seminar
Masterseminar Topologie "L^2-Betti Zahlen" (N.N.)
Zeit: Do 10:00-12:00 (Erster Termin: 16.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Grundwissen in Topologie und Gruppentheorie wird vorausgesetzt.
Kommentar
Die Euler Charakteristik von endlichen CW-Komplexen ist multiplikativ unter endlichen Überlagerungen und sie ist homotopie-invariant. Diese Eigenschaften können von unterschiedlichen Beschreibungen hergeleitet werden:
1. Als alternierende Summe der Anzahlen der Zellen, welche multiplikativ aber nicht homotopie-invariant sind.
2. Als alternierende Summe der Betti Zahlen, welche homotopie-invariant aber nicht multiplikativ sind. Die $n$-te Betti Zahl von $X$ ist die $\mathbb{Q}$-Dimension der Homologie $H_n(X;\mathbb{Q})$ mit rationalen Koeffizienten.
3. Als alternierende Summe der $L^2$-Betti Zahlen, welche die besten Eigenschaften beider Welten haben: sie sind multiplikativ und homotopie-invariant. Die $n$-te $L^2$-Betti Zahl von $X$ ist die von Neumann-Dimension der Homologie $H_n(X;\mathbb{\calN}\pi_1(X))$ mit geeigneten Koeffizienten.
$L^2$-Betti Zahlen sind bedeutsame topologische Invarianten, da sie Hindernisse sind für Abbildungs-Tori und $S^1$-Wirkungen. Sie haben außerdem Anwendungen in der Gruppentheorie, indem man die $L^2$-Betti Zahlen von klassifizierenden Räumen betrachtet. Darüber hinaus stehen $L^2$-Betti Zahlen in Verbindung zu berühmten offenen
Problemen, wie den Hopf und Singer Vermutungen zur Euler Charakteristik von Mannigfaltigkeiten, und der Kaplansky Vermutung zu Nullteilern in Gruppenringen.Nähere Informationen entnehmen Sie der Homepage des Seminars.
Literaturhinweise
This seminar will be an introduction to $L^2$-Betti numbers, following mostly
the book by Holger Kammeyer. -
19226511
Seminar
Seminar Mehrskalenmethoden in molekularen Simulationen (Luigi Delle Site)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: Seminarraum in der Arnimallee 9
Zusätzl. Angaben / Voraussetzungen
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Kommentar
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Literaturhinweise
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19246911
Seminar
Geometric Deep Learning (Christoph Tycowicz)
Zeit: Fr 10:00-12:00 (Erster Termin: 17.10.2025)
Ort: T9/055 Seminarraum (Takustr. 9)
Kommentar
Voraussetzungen:
Ein solider Hintergrund in Differentialgeometrie oder geometrischem Rechnen ist von Vorteil, aber nicht zwingend erforderlich.
Studierende, die keine verwandten Kurse besucht haben (Differentialgeometrie I, Wissenschaftliche Visualisierung, ...) können das Seminar besuchen, sollten aber bereit sein, mehr Zeit zu investieren.Beschreibung:
Geometric Deep Learning ist ein breit gefächertes und aufstrebendes Forschungsparadigma, das sich mit der Konzeption und Untersuchung von Architekturen neuronaler Netze befasst, die die Invarianzen und Symmetrien in Daten berücksichtigen.
In der Tat weisen viele reale Aufgaben wesentliche vordefinierte Regelmäßigkeiten auf, die sich aus der zugrunde liegenden niedrigen Dimensionalität und Struktur der physischen Welt ergeben.
Es hat sich gezeigt, dass die Erfassung dieser Regelmäßigkeiten durch vereinheitlichte geometrische Prinzipien zu erheblichen empirischen Verbesserungen führt.
Beispiele für solche geometrischen Architekturen sind graphische neuronale Netze sowie Modelle für Daten in gekrümmten Mannigfaltigkeiten.Ziel dieses Seminars ist es, vertieftes Wissen über die Kernmethodik des Geometric Deep Learning sowie einen Überblick über die neuesten Methoden zu vermitteln.
Die Studierenden erwerben praktische Fähigkeiten im Lesen, Präsentieren, Erklären und Diskutieren von wissenschaftlichen Arbeiten.
Das Seminar kann als Vorbereitung für ein MSc-Thema genutzt werden.Literaturhinweise
Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021) Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478
-
19247111
Seminar
Gewöhnliche Differentialgleichungen (Marita Thomas)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Gewöhnliche Differentialgleichungen treten in vielen Anwendungen aus der Physik, Chemie, Biologie oder den Wirtschaftwissenschaften auf. Dieses Seminar erweitert die aus der Analysis III Vorlesung bekannten Inhalte. Behandelt werden u.A. Eigenwertprobleme und Stabilitätstheorie.
-
19206111
Seminar
-
Ergänzungsmodul: Aktuelle Forschungsthemen B
0280cA4.8-
19206111
Seminar
Forschungsmodul: Diskrete Geometrie (Giulia Codenotti)
Zeit: Termine siehe LV-Details (Erster Termin: 26.01.2026)
Ort: keine Angabe
Kommentar
In diesem Seminar geht es um Polytope und Punktgitter.
Das Seminar wird vermutlich großteils auf Englisch stattfinden.Literaturhinweise
Themenvergabe und speziellere Literaturangaben in der Vorbesprechung zum Seminar.
-
19207219
Seminaristische Übung
Formale Beweisverifikation (Christoph Spiegel, Silas Rathke)
Zeit: -
Ort: keine Angabe
Kommentar
Dieser zweiwöchige Blockkurs an der Freien Universität Berlin bietet eine praxisorientierte Einführung in die formale Beweisverifikation mit dem Theorembeweiser Lean. Die Vorlesungen finden am Zuse-Institut Berlin (ZIB) statt; die Räume für die Tutorien an der FU werden nach Anmeldestand bekanntgegeben. Der Kurs steht allen offen (auch Gasthörer*innen); bei den Tutorien haben FU-Studierende mit ABV-Bedarf Priorität. Bitte einen eigenen Laptop mitbringen. Erwartet werden solide Kenntnisse aus Analysis I und Linearer Algebra I; Programmierkenntnisse sind nicht erforderlich, eine technische Affinität ist jedoch hilfreich. Lehrsprache ist Englisch (Beiträge auf Deutsch sind willkommen). Alle Informationen und Materialien — u. a. zu Logik, Mengenlehre, natürlichen Zahlen, Unendlichkeit der Primzahlen und Grundzügen der Graphentheorie — finden sich auf der GitHub-Seite des Kurses.
Für eine Anrechnung im Master wird der Kurs um differenzierte Übungen und erweiterte Prüfungsleistungen ergänzt. Die Übungsaufgaben sind dreistufig: grundlegende Aufgaben (mit gut lesbaren Beweisvorlagen), vertiefte Aufgaben auf Master-Niveau sowie optionale Stretch-Aufgaben; während der Übungen erfolgt Betreuung und eine informelle Fortschrittsrückmeldung. Die Abschlussprüfung ist eine schriftliche Klausur, die sowohl Konzeptverständnis als auch praktische Lean-Fertigkeiten prüft. Zusätzlich bearbeiten Master-Studierende ein Lean-Formalisierungsprojekt (einzeln oder zu zweit) und präsentieren es in einem mündlichen Prüfungsgespräch ein bis zwei Wochen nach Kursende; die M.Sc.-Note ergibt sich aus Klausur und Projekt.
-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19212211
Seminar
Seminar zu Themen der Geometrischen Analysis und der Differentialgeometrie (Elena Mäder-Baumdicker)
Zeit: Mi 15.10. 12:00-14:00, Mi 05.11. 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Ana I bis III, lineare Algebra I und II sowie mindestens einer der beiden Vorlesungen Differentialgeometrie I oder Differentialgleichungen I.
Kommentar
This seminar is intended for Bachelor's and Master's students with an interest in topics related to Geometric Analysis and Differential Geometry. Each semester, the seminar focuses on a different theme — examples include geometric variational problems, geometric flows, and geometric measure theory.
In the first meeting of the semester, students can express their interest in participating. In the second meeting, each participant selects a topic from a curated list. The presentations themselves will take place during a dedicated seminar week at the end of the term.
-
19214411
Seminar
Forschungsmodul: Differentialgeometrie (Konrad Polthier, Tillmann Kleiner)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
Kommentar
In diesem Seminar werden differentialgeometrische Themen anhand aktueller Forschungsarbeiten selbständig erarbeitet und im Vortrag vorgestellt.
Besonderer Schwerpunkt liegt auf der konkreten Umsetzung differentialgeometrischer Konzepte in Anwendungsszenarien und den dabei auftretenden Fragen der Diskretisierung und algorithmischen Umsetzung.Lernziele sind ein tieferes Verständnis differentialgeometrischer Konzepte, sowie Probleme und Lösungsstrategien bei ihrem praktischen Einsatz.
Vorkenntnisse: Differentialgeometrie I
-
19223811
Seminar
Masterseminar Topologie "L^2-Betti Zahlen" (N.N.)
Zeit: Do 10:00-12:00 (Erster Termin: 16.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Grundwissen in Topologie und Gruppentheorie wird vorausgesetzt.
Kommentar
Die Euler Charakteristik von endlichen CW-Komplexen ist multiplikativ unter endlichen Überlagerungen und sie ist homotopie-invariant. Diese Eigenschaften können von unterschiedlichen Beschreibungen hergeleitet werden:
1. Als alternierende Summe der Anzahlen der Zellen, welche multiplikativ aber nicht homotopie-invariant sind.
2. Als alternierende Summe der Betti Zahlen, welche homotopie-invariant aber nicht multiplikativ sind. Die $n$-te Betti Zahl von $X$ ist die $\mathbb{Q}$-Dimension der Homologie $H_n(X;\mathbb{Q})$ mit rationalen Koeffizienten.
3. Als alternierende Summe der $L^2$-Betti Zahlen, welche die besten Eigenschaften beider Welten haben: sie sind multiplikativ und homotopie-invariant. Die $n$-te $L^2$-Betti Zahl von $X$ ist die von Neumann-Dimension der Homologie $H_n(X;\mathbb{\calN}\pi_1(X))$ mit geeigneten Koeffizienten.
$L^2$-Betti Zahlen sind bedeutsame topologische Invarianten, da sie Hindernisse sind für Abbildungs-Tori und $S^1$-Wirkungen. Sie haben außerdem Anwendungen in der Gruppentheorie, indem man die $L^2$-Betti Zahlen von klassifizierenden Räumen betrachtet. Darüber hinaus stehen $L^2$-Betti Zahlen in Verbindung zu berühmten offenen
Problemen, wie den Hopf und Singer Vermutungen zur Euler Charakteristik von Mannigfaltigkeiten, und der Kaplansky Vermutung zu Nullteilern in Gruppenringen.Nähere Informationen entnehmen Sie der Homepage des Seminars.
Literaturhinweise
This seminar will be an introduction to $L^2$-Betti numbers, following mostly
the book by Holger Kammeyer. -
19226511
Seminar
Seminar Mehrskalenmethoden in molekularen Simulationen (Luigi Delle Site)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: Seminarraum in der Arnimallee 9
Zusätzl. Angaben / Voraussetzungen
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Kommentar
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Literaturhinweise
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19246911
Seminar
Geometric Deep Learning (Christoph Tycowicz)
Zeit: Fr 10:00-12:00 (Erster Termin: 17.10.2025)
Ort: T9/055 Seminarraum (Takustr. 9)
Kommentar
Voraussetzungen:
Ein solider Hintergrund in Differentialgeometrie oder geometrischem Rechnen ist von Vorteil, aber nicht zwingend erforderlich.
Studierende, die keine verwandten Kurse besucht haben (Differentialgeometrie I, Wissenschaftliche Visualisierung, ...) können das Seminar besuchen, sollten aber bereit sein, mehr Zeit zu investieren.Beschreibung:
Geometric Deep Learning ist ein breit gefächertes und aufstrebendes Forschungsparadigma, das sich mit der Konzeption und Untersuchung von Architekturen neuronaler Netze befasst, die die Invarianzen und Symmetrien in Daten berücksichtigen.
In der Tat weisen viele reale Aufgaben wesentliche vordefinierte Regelmäßigkeiten auf, die sich aus der zugrunde liegenden niedrigen Dimensionalität und Struktur der physischen Welt ergeben.
Es hat sich gezeigt, dass die Erfassung dieser Regelmäßigkeiten durch vereinheitlichte geometrische Prinzipien zu erheblichen empirischen Verbesserungen führt.
Beispiele für solche geometrischen Architekturen sind graphische neuronale Netze sowie Modelle für Daten in gekrümmten Mannigfaltigkeiten.Ziel dieses Seminars ist es, vertieftes Wissen über die Kernmethodik des Geometric Deep Learning sowie einen Überblick über die neuesten Methoden zu vermitteln.
Die Studierenden erwerben praktische Fähigkeiten im Lesen, Präsentieren, Erklären und Diskutieren von wissenschaftlichen Arbeiten.
Das Seminar kann als Vorbereitung für ein MSc-Thema genutzt werden.Literaturhinweise
Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021) Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478
-
19247111
Seminar
Gewöhnliche Differentialgleichungen (Marita Thomas)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Gewöhnliche Differentialgleichungen treten in vielen Anwendungen aus der Physik, Chemie, Biologie oder den Wirtschaftwissenschaften auf. Dieses Seminar erweitert die aus der Analysis III Vorlesung bekannten Inhalte. Behandelt werden u.A. Eigenwertprobleme und Stabilitätstheorie.
-
19206111
Seminar
-
Ergänzungsmodul: Aktuelle Forschungsthemen C
0280cA4.9-
19206111
Seminar
Forschungsmodul: Diskrete Geometrie (Giulia Codenotti)
Zeit: Termine siehe LV-Details (Erster Termin: 26.01.2026)
Ort: keine Angabe
Kommentar
In diesem Seminar geht es um Polytope und Punktgitter.
Das Seminar wird vermutlich großteils auf Englisch stattfinden.Literaturhinweise
Themenvergabe und speziellere Literaturangaben in der Vorbesprechung zum Seminar.
-
19207219
Seminaristische Übung
Formale Beweisverifikation (Christoph Spiegel, Silas Rathke)
Zeit: -
Ort: keine Angabe
Kommentar
Dieser zweiwöchige Blockkurs an der Freien Universität Berlin bietet eine praxisorientierte Einführung in die formale Beweisverifikation mit dem Theorembeweiser Lean. Die Vorlesungen finden am Zuse-Institut Berlin (ZIB) statt; die Räume für die Tutorien an der FU werden nach Anmeldestand bekanntgegeben. Der Kurs steht allen offen (auch Gasthörer*innen); bei den Tutorien haben FU-Studierende mit ABV-Bedarf Priorität. Bitte einen eigenen Laptop mitbringen. Erwartet werden solide Kenntnisse aus Analysis I und Linearer Algebra I; Programmierkenntnisse sind nicht erforderlich, eine technische Affinität ist jedoch hilfreich. Lehrsprache ist Englisch (Beiträge auf Deutsch sind willkommen). Alle Informationen und Materialien — u. a. zu Logik, Mengenlehre, natürlichen Zahlen, Unendlichkeit der Primzahlen und Grundzügen der Graphentheorie — finden sich auf der GitHub-Seite des Kurses.
Für eine Anrechnung im Master wird der Kurs um differenzierte Übungen und erweiterte Prüfungsleistungen ergänzt. Die Übungsaufgaben sind dreistufig: grundlegende Aufgaben (mit gut lesbaren Beweisvorlagen), vertiefte Aufgaben auf Master-Niveau sowie optionale Stretch-Aufgaben; während der Übungen erfolgt Betreuung und eine informelle Fortschrittsrückmeldung. Die Abschlussprüfung ist eine schriftliche Klausur, die sowohl Konzeptverständnis als auch praktische Lean-Fertigkeiten prüft. Zusätzlich bearbeiten Master-Studierende ein Lean-Formalisierungsprojekt (einzeln oder zu zweit) und präsentieren es in einem mündlichen Prüfungsgespräch ein bis zwei Wochen nach Kursende; die M.Sc.-Note ergibt sich aus Klausur und Projekt.
-
19208111
Seminar
Masterseminar Stochastik "Mathematical Reinforcement Learning for AI" (Guilherme de Lima Feltes, Dave Jacobi, Nicolas Perkowski)
Zeit: Do 16:00-18:00 (Erster Termin: 16.10.2025)
Ort: A7/SR 140 Seminarraum (Hinterhaus) (Arnimallee 7)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Stochastik I und II. Wünschenswert: Stochastik III.
Zielgruppe: BMS Studierende, Masterstudierende der Mathematik oder fortgeschrittene Bachelorstudierende der Mathematik.Kommentar
Inhalt: Das Seminar behandelt fortgeschrittene Themen der Stochastik.
Nähere Informationen finden Sie auf der Homepage des Seminars.
Reinforcement Learning bildet den Kern vieler state-of-the-art KI-Algorithmen und ermöglicht somit Agenten komplexe Optimalsteuerungsaufgaben in der Robotik, im Finanzwesen, im Bereich pyhsical AI, in der Medikamentenentwicklung, der Computerspielentwicklung und vielen anderen Anwendungsgebieten zu lösen.
Dieses Seminar bietet eine rigorose Einführung in das Reinforcement Learning und fokussiert sich dabei auf die mathematischen Prinzipien, welche für die Funktionsweise von Reinforcement Learning Algorithmen verantwortlich sind. Wir werden ein fundiertes mathematisches Verständnis von Markov Entscheidungsprozessen, Wertefunktions-basierten Methoden und ihrer Verbindung zu stochastischen Optimalsteuerungsproblemen entwickeln. Darüber hinaus betrachten wir Policygradient Methods und Konvergenzeigenschaften klassischer Reinforcement Learning Algorithmen via Stochastischer Approximationstheorie und stochastischem Gradientenabstieg sowie zeitstetiges Reinforcement Learning im Rahmen von stochastischen Differentialgleichungen.
Ziel des Seminars ist es Studierenden, die sich für mathematische Forschung im Bereich Reinforcement Learning und künstlicher Intelligenz interessieren, eine rigorose Grundlagenperspektive zu bieten. Teilnehmende sollten über starke mathematische Kenntnisse insbesondere in der Wahrscheinlichkeitstheorie verfügen.Literaturhinweise
Literatur wird in der Vorbesprechung bekanntgegeben.
Literature will be announced in the preliminary discussion
-
19212211
Seminar
Seminar zu Themen der Geometrischen Analysis und der Differentialgeometrie (Elena Mäder-Baumdicker)
Zeit: Mi 15.10. 12:00-14:00, Mi 05.11. 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Ana I bis III, lineare Algebra I und II sowie mindestens einer der beiden Vorlesungen Differentialgeometrie I oder Differentialgleichungen I.
Kommentar
This seminar is intended for Bachelor's and Master's students with an interest in topics related to Geometric Analysis and Differential Geometry. Each semester, the seminar focuses on a different theme — examples include geometric variational problems, geometric flows, and geometric measure theory.
In the first meeting of the semester, students can express their interest in participating. In the second meeting, each participant selects a topic from a curated list. The presentations themselves will take place during a dedicated seminar week at the end of the term.
-
19214411
Seminar
Forschungsmodul: Differentialgeometrie (Konrad Polthier, Tillmann Kleiner)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
Kommentar
In diesem Seminar werden differentialgeometrische Themen anhand aktueller Forschungsarbeiten selbständig erarbeitet und im Vortrag vorgestellt.
Besonderer Schwerpunkt liegt auf der konkreten Umsetzung differentialgeometrischer Konzepte in Anwendungsszenarien und den dabei auftretenden Fragen der Diskretisierung und algorithmischen Umsetzung.Lernziele sind ein tieferes Verständnis differentialgeometrischer Konzepte, sowie Probleme und Lösungsstrategien bei ihrem praktischen Einsatz.
Vorkenntnisse: Differentialgeometrie I
-
19223811
Seminar
Masterseminar Topologie "L^2-Betti Zahlen" (N.N.)
Zeit: Do 10:00-12:00 (Erster Termin: 16.10.2025)
Ort: A3/SR 115 (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Voraussetzungen: Grundwissen in Topologie und Gruppentheorie wird vorausgesetzt.
Kommentar
Die Euler Charakteristik von endlichen CW-Komplexen ist multiplikativ unter endlichen Überlagerungen und sie ist homotopie-invariant. Diese Eigenschaften können von unterschiedlichen Beschreibungen hergeleitet werden:
1. Als alternierende Summe der Anzahlen der Zellen, welche multiplikativ aber nicht homotopie-invariant sind.
2. Als alternierende Summe der Betti Zahlen, welche homotopie-invariant aber nicht multiplikativ sind. Die $n$-te Betti Zahl von $X$ ist die $\mathbb{Q}$-Dimension der Homologie $H_n(X;\mathbb{Q})$ mit rationalen Koeffizienten.
3. Als alternierende Summe der $L^2$-Betti Zahlen, welche die besten Eigenschaften beider Welten haben: sie sind multiplikativ und homotopie-invariant. Die $n$-te $L^2$-Betti Zahl von $X$ ist die von Neumann-Dimension der Homologie $H_n(X;\mathbb{\calN}\pi_1(X))$ mit geeigneten Koeffizienten.
$L^2$-Betti Zahlen sind bedeutsame topologische Invarianten, da sie Hindernisse sind für Abbildungs-Tori und $S^1$-Wirkungen. Sie haben außerdem Anwendungen in der Gruppentheorie, indem man die $L^2$-Betti Zahlen von klassifizierenden Räumen betrachtet. Darüber hinaus stehen $L^2$-Betti Zahlen in Verbindung zu berühmten offenen
Problemen, wie den Hopf und Singer Vermutungen zur Euler Charakteristik von Mannigfaltigkeiten, und der Kaplansky Vermutung zu Nullteilern in Gruppenringen.Nähere Informationen entnehmen Sie der Homepage des Seminars.
Literaturhinweise
This seminar will be an introduction to $L^2$-Betti numbers, following mostly
the book by Holger Kammeyer. -
19226511
Seminar
Seminar Mehrskalenmethoden in molekularen Simulationen (Luigi Delle Site)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: Seminarraum in der Arnimallee 9
Zusätzl. Angaben / Voraussetzungen
Audience: At least 6th semester with a background in statistical and quantum mechanics, Master students and PhD students (even postdocs) are welcome.
Kommentar
Content: The seminar will concern the discussion of state-of-art techniques in molecular simulation which allow for a simulation of several space (especially) and time scale within one computational approach.
The discussion will concerns both, specific computational coding and conceptual developments.
Literaturhinweise
Related Basic Literature:
(1) M.Praprotnik, L.Delle Site and K.Kremer, Ann.Rev.Phys.Chem.59, 545-571 (2008)
(2) C.Peter, L.Delle Site and K.Kremer, Soft Matter 4, 859-869 (2008).
(3) M.Praprotnik and L.Delle Site, in "Biomolecular Simulations: Methods and Protocols" L.Monticelli and E.Salonen Eds. Vol.924, 567-583 (2012) Methods Mol. Biol. Springer-Science
-
19246911
Seminar
Geometric Deep Learning (Christoph Tycowicz)
Zeit: Fr 10:00-12:00 (Erster Termin: 17.10.2025)
Ort: T9/055 Seminarraum (Takustr. 9)
Kommentar
Voraussetzungen:
Ein solider Hintergrund in Differentialgeometrie oder geometrischem Rechnen ist von Vorteil, aber nicht zwingend erforderlich.
Studierende, die keine verwandten Kurse besucht haben (Differentialgeometrie I, Wissenschaftliche Visualisierung, ...) können das Seminar besuchen, sollten aber bereit sein, mehr Zeit zu investieren.Beschreibung:
Geometric Deep Learning ist ein breit gefächertes und aufstrebendes Forschungsparadigma, das sich mit der Konzeption und Untersuchung von Architekturen neuronaler Netze befasst, die die Invarianzen und Symmetrien in Daten berücksichtigen.
In der Tat weisen viele reale Aufgaben wesentliche vordefinierte Regelmäßigkeiten auf, die sich aus der zugrunde liegenden niedrigen Dimensionalität und Struktur der physischen Welt ergeben.
Es hat sich gezeigt, dass die Erfassung dieser Regelmäßigkeiten durch vereinheitlichte geometrische Prinzipien zu erheblichen empirischen Verbesserungen führt.
Beispiele für solche geometrischen Architekturen sind graphische neuronale Netze sowie Modelle für Daten in gekrümmten Mannigfaltigkeiten.Ziel dieses Seminars ist es, vertieftes Wissen über die Kernmethodik des Geometric Deep Learning sowie einen Überblick über die neuesten Methoden zu vermitteln.
Die Studierenden erwerben praktische Fähigkeiten im Lesen, Präsentieren, Erklären und Diskutieren von wissenschaftlichen Arbeiten.
Das Seminar kann als Vorbereitung für ein MSc-Thema genutzt werden.Literaturhinweise
Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković (2021) Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478
-
19247111
Seminar
Gewöhnliche Differentialgleichungen (Marita Thomas)
Zeit: Di 16:00-18:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Kommentar
Gewöhnliche Differentialgleichungen treten in vielen Anwendungen aus der Physik, Chemie, Biologie oder den Wirtschaftwissenschaften auf. Dieses Seminar erweitert die aus der Analysis III Vorlesung bekannten Inhalte. Behandelt werden u.A. Eigenwertprobleme und Stabilitätstheorie.
-
19206111
Seminar
-
-
Basismodul: Algebra I 0280cA1.1
-
Basismodul: Dynamische Systeme II 0280cA1.10
-
Basismodul: Numerik III 0280cA1.12
-
Basismodul: Partielle Differentialgleichungen I 0280cA1.13
-
Basismodul: Stochastik III 0280cA1.16
-
Basismodul: Topologie I 0280cA1.17
-
Basismodul: Zahlentheorie II 0280cA1.19
-
Basismodul: Algebra II 0280cA1.2
-
Basismodul: Differentialgeometrie II 0280cA1.4
-
Basismodul: Diskrete Geometrie II 0280cA1.6
-
Basismodul: Diskrete Mathematik I 0280cA1.7
-
Basismodul: Dynamische Systeme I 0280cA1.9
-
Aufbaumodul: Zahlentheorie III 0280cA2.10
-
Aufbaumodul: Differentialgeometrie III 0280cA2.2
-
Aufbaumodul: Diskrete Mathematik III 0280cA2.4
-
Aufbaumodul: Dynamische Systeme III 0280cA2.5
-
Aufbaumodul: Partielle Differentialgleichungen III 0280cA2.7
-
Aufbaumodul: Stochastik IV 0280cA2.8
-
Aufbaumodul: Topologie III 0280cA2.9
-
Vertiefungsmodul: Masterseminar Algebra 0280cA3.1
-
Vertiefungsmodul: Masterseminar Zahlentheorie 0280cA3.10
-
Vertiefungsmodul: Masterseminar Diskrete Mathematik 0280cA3.4
-
Vertiefungsmodul: Masterseminar Dynamische Systeme 0280cA3.5
-
Ergänzungsmodul: Spezielle Forschungsaspekte 0280cA4.10
-
Ergänzungsmodul: Forschungsprojekt 0280cA4.11
-
