Lehramt für Mathematik
Bachelor Lehramt Mathematik (SPO 2017)
0082f_k90-
Mathematik entdecken I (10 LP)
0082fA1.1-
19233701
Vorlesung
Mathematik entdecken I (N.N.)
Zeit: Mi 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Zusätzl. Angaben / Voraussetzungen
Diese Veranstaltung richtet sich an Studierende der Lehramtsstudiengänge.
Kommentar
Inhalt
Im Zentrum steht das Einüben mathematischer Denk- und Arbeitsweisen. Diese werden anhand von Problemen aus der Kombinatorik, der elementaren Zahlentheorie und der elementaren Geometrie trainiert.
Nähere Informationen finden Sie auf der Homepage der Vorlesung.Anwesenheitspflicht
Bei der Zentralübung am Montag ist Anwesenheit Pflicht.
-
19233702
Übung
Übung zu Mathematik entdecken I (N.N.)
Zeit: Fr 12:00-14:00 (Erster Termin: 24.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
-
19233701
Vorlesung
-
Mathematisches Panorama (5 LP)
0082fA1.3-
19236101
Vorlesung
Mathematisches Panorama (Anina Mischau, Sarah Wolf)
Zeit: Mi 12:00-14:00 (Erster Termin: 15.10.2025)
Ort: T9/SR 005 Übungsraum (Takustr. 9)
Kommentar
Mathematisches Panorama ist eine zweistündige Vorlesung mit Übungen, die sich besonders - aber nicht nur - an Bachelor- sowie Lehramtsstudierende der Mathematik richtet. Sie entwickelt eine Übersicht über die moderne Mathematik - Mathematik als Teil der Kultur, als Forschungsgebiet, als Anwendungswerkzeug und als Schulfach. Ein solches Bild der Mathematik unterliegt vielen Einflüssen: Es ist zum Beispiel geprägt von der geschichtlichen Entwicklung der Mathematik und ihren Moden im Laufe der Zeit, dem Blickwinkel, den wir heute von Mathematik haben, sowie von den gesellschaftlichen Anforderungen, die an die Mathematik gestellt werden.
Vorgestellt und dargestellt werden unter anderem aktuelle Fronten der Forschung, die Struktur („Landkarte“) der modernen Mathematik, die geschichtliche Entwicklung ausgewählter Gebiete der Mathematik sowie deren Vernetzung, Methoden, Arbeitsweisen und wichtige Akteur*innen im Lauf der Zeit.
Der Inhalt soll insbesondere auch bei der Vermittlung von Mathematik, z.B. in der Schule, von Nutzen sein. Wir orientieren uns daher bewusst an Schlüsselbegriffen, die aus der Schule bekannt sind.
Die Vorlesung behandelt eine Auswahl der folgenden Themen:
I Was ist Mathematik
- Was ist Mathematik?
- Mathematisches Arbeiten
- Beweise, Formeln und Bilder
- Philosophie und Geschichte der Mathematik
II Konzepte
- Unendlichkeit
- Dimensionen
- Primzahlen
- Zahlbereiche
- Funktionen
- Zufall - Wahrscheinlichkeit - Statistik
III Mathematik im Alltag
- Rechnen
- Algorithmen
- Anwendungen
- Mathematik in der Öffentlichkeit
Literaturhinweise
- Günter M. Ziegler und Andreas Loos: Panorama der Mathematik, Springer-Spektrum 2018, in Vorbereitung (wird in Auszügen zur Verfügung gestellt)
- Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise, Springer 2009
- Band 1: Von den Anfängen bis Leibniz und Newton
- Band 2: Von Euler bis zur Gegenwart
- Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
- Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
- Heinz Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
- Richard Courant und Herbert Robbins, What is Mathematics?, Oxford UP 1941 (deutsch: Springer 2010)
- Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999
-
19236102
Übung
Übung zu: Mathematisches Panorama (Anina Mischau)
Zeit: Fr 12:00-14:00 (Erster Termin: 24.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19236101
Vorlesung
-
Analysis I (10 LP)
0082fA1.4-
19202801
Vorlesung
Analysis I (Elena Mäder-Baumdicker)
Zeit: Di 10:00-12:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
Inhalt:
Dies ist der erste Teil einer dreisemestrigen Einführung in die mathematische Grunddisziplin Analysis. Behandelt wird die Differenzial- und Integralrechnung in einer reellen Veränderlichen. Themen:- Grundlagen, Elementare Logik, Geordnete Paare, Relationen, Funktionen, Definitionsbereich und Wertebereich einer Funktion, Umkehrfunktion (Injektivität, Surjektivität)
- Zahlen, Vollständige Induktion, Rechnen in R, C
- Anordnung von R, Maximum und Minimum, Supremum und Infimum reeller Mengen, Supremums/Infimums-Vollständigkeit von R, Betrag einer reellen Zahl, Q ist dicht in R
- Folgen und Reihen, Grenzwerte, Cauchyfolgen, Konvergenzkriterien, Reihen und grundlegende Konvergenzprinzipien
- Topologische Aspekte von R, offene, abgeschlossene und kompakte reelle Mengen
- Funktionenfolgen, Funktionenreihen, Potenzreihen
- Eigenschaften von Funktionen, Beschränktheit, Monotonie, Konvexität
- Stetigkeit, Grenzwerte und Stetigkeit von Funktionen, Gleichmäßige Stetigkeit, Zwischenwertsätze, Stetigkeit und Kompaktheit
- Differenzierbarkeit, Begriff der Ableitung, Differentiationsregeln, Mittelwertsätze, Lokale und globale Extrema, Krümmung, Monotonie, Konvexität
- Elementare Funktionen, Rationale Funktionen, Wurzelfunktionen, Exponentialfunktionen, Winkelfunktionen, Hyperbolische Funktionen, Reeller Logarithmus, Reelle Arkus-Funktionen, Kurvendiskussionen
- Anfänge der Integralrechnung
Literaturhinweise
Literature:
- Bröcker, Theodor: Analysis 1, Spektrum der Wissenschaft-Verlag.
- Forster, Otto: Analysis 1, Vieweg-Verlag.
- Spivak, Michael: Calculus, 4th Edition.
Viele Analysis Bücher sind auch über die Fachbibliothek der FU Berlin elektronisch verfügbar.
Bei Schwierigkeiten mit den Grundbegriffen Menge, Abbildung etc. ist die folgende Ausarbeitung empfehlenswert:
- Scheerer, Hans: Brückenkurs, Skript FU Berlin 2006.
-
19202802
Übung
Übung zu Analysis I (Elena Mäder-Baumdicker)
Zeit: Mi 12:00-14:00, Mi 14:00-16:00, Fr 08:00-10:00, Fr 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: Mi A3/SR 119 (Arnimallee 3-5), Fr A3/SR 119 (Arnimallee 3-5), Fr A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19202801
Vorlesung
-
Lineare Algebra I (10 LP)
0082fA1.5-
19201401
Vorlesung
Lineare Algebra I Winter (Georg Loho)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Inhalt
- Grundbegriffe: Mengen, Abbildungen, Äquivalenzrelationen, Gruppen, Ringe, Körper
- Lineare Gleichungssysteme: Lösbarkeitskriterien, Gauß-Algorithmus
- Vektorräume: Lineare Unabhängigkeit, Erzeugendensysteme und Basen, Dimension, Unterräume, Faktorräume, Vektorprodukt im R3
- Lineare Abbildungen: Bild und Rang, Zusammenhang mit Matrizen, Verhalten bei Basiswechsel
- Dualer Vektorraum: Multilinearformen, alternierende und symmetrische Bilinearformen, Zusammenhang mit Matrizen, Basiswechsel
- Determinanten: Cramersche Regel, Eigenwerte und -vektoren
Voraussetzungen
- Der Brückenkurs Mathematik ist zum Einstieg sehr zu empfehlen!
Literaturhinweise
- Siegfried Bosch, Lineare Algebra, 4. Auflage, Springer-Verlag, 2008;
- Gerd Fischer, Lernbuch Lineare Algebra und Analytische Geometrie, Springer-Verlag, 2017;
- Bartel Leendert van der Waerden, Algebra Volume I, 9th Edition, Springer 1993;
Zu den Grundlagen
- Kevin Houston, Wie man mathematisch denkt: Eine Einführung in die mathematische Arbeitstechnik für Studienanfänger, Spektrum Akademischer Verlag, 2012
-
19201402
Übung
Übung zu Lineare Algebra I (Georg Loho, Jan-Hendrik de Wiljes)
Zeit: Mo 10:00-12:00, Mo 16:00-18:00, Mi 10:00-12:00, Do 08:00-10:00, Do 12:00-14:00, Fr 10:00-12:00 (Erster Termin: 15.10.2025)
Ort: Mo A3/SR 115 (Arnimallee 3-5), Mo A6/SR 009 Seminarraum (Arnimallee 6), Mi A6/SR 009 Seminarraum (Arnimallee 6), Do A6/SR 007/008 Seminarraum (Arnimallee 6), Do A6/SR 032 Seminarraum (Arnimallee 6), Fr A6/SR 031 Seminarraum (Arnimallee 6)
-
19201401
Vorlesung
-
Analysis II (10 LP)
0082fA2.1-
19211601
Vorlesung
Analysis II Winter (Pavle Blagojevic)
Zeit: Di 10:00-12:00, Do 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/Hs 001 Hörsaal (Arnimallee 3-5)
Kommentar
Inhalt
- Ergänzungen zur Analysis I. Uneigentliche Integrale.
- Gleichmäßige Konvergenz von Funktionenfolgen. Potenzreihen. Satz von Taylor.
- Elemente der Topologie. Normierte und metrische Räume. Offene Mengen. Konvergenz. Abgeschlossene Mengen. Stetigkeit. Kompaktheit.
- Differentialrechnung mehrerer Veränderlicher. Partielle, totale und stetige Differenzierbarkeit. Satz über die Umkehrfunktion. Satz über implizite Funktionen.
- Iterierte Integrale.
- Gewöhnliche Differentialgleichungen. Grundlegende Begriffe, Elementar lösbare Differentialgleichungen, Existenz- und Eindeutigkeitsresultate für Systeme.
Literaturhinweise
- O. Forster: Analysis 1 und 2. Vieweg/Springer.
- Königsberger, K: Analysis 1,2, Springer.
- E. Behrends: Analysis Band 1 und 2, Vieweg/Springer.
- H. Heuser: Lehrbuch der Analysis 1 und 2, Teubner/Springer.
-
19211601
Vorlesung
-
Lineare Algebra II (10 LP)
0082fA2.2-
19211702
Übung
Übung zu Lineare Algebra II (Marcus Weber)
Zeit: Di 08:00-10:00, Di 14:00-16:00, Mi 12:00-14:00, Do 16:00-18:00, Fr 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
-
19211702
Übung
-
Zahlen, Gleichungen, algebraische Strukturen (10 LP)
0082fA2.3-
19200701
Vorlesung
Algebra und Zahlentheorie (Alexander Schmitt)
Zeit: Mo 08:00-10:00, Mi 08:00-10:00 (Erster Termin: 15.10.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
Inhalt
Ausgewählte Themen aus:- Teilbarkeit in Ringen (insbesondere Z- und Polynomringe); Restklassen und Kongruenzen; Moduln und Ideale
- Euklidische, Hauptideal- und faktorielle Ringe
- Das quadratische Reziprozitätsgesetz
- Primzahltests und Kryptographie
- Die Struktur abelscher Gruppen (oder Moduln über Hauptidealringen)
- Satz über symmetrische Funktionen
- Körpererweiterungen, Galois-Korrespondenz; Konstruktionen mit Zirkel und Lineal
- Nicht-abelsche Gruppen (Satz von Lagrange, Normalteiler, Auflösbarkeit, Sylowgruppen)
-
19200702
Übung
Übung zu Algebra und Zahlentheorie (Alexander Schmitt)
Zeit: Mi 14:00-16:00, Do 14:00-16:00 (Erster Termin: 15.10.2025)
Ort: A6/SR 025/026 Seminarraum (Arnimallee 6)
-
19200701
Vorlesung
-
Wahrscheinlichkeit und Statistik (10 LP)
0082fA3.1-
19220901
Vorlesung
Wahrscheinlichkeit und Statistik (N.N.)
Zeit: Di 12:00-14:00, Do 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
Kommentar
Es werden insbesondere folgende Inhalte vermittelt.
– Diskrete Wahrscheinlichkeitsräume und -maße
– Diskrete und stetige Zufallsvariablen und ihre Verteilungen, wichtige Beispiele
– Erwartungswert, (Ko-)Varianz, Korrelation
– Bedingte Wahrscheinlichkeit, Unabhängigkeit
– Schwaches Gesetz der großen Zahl
– Zentraler Grenzwertsatz
– Datenanalyse und deskriptive Statistik: Histogramme; empirische Verteilung; Kenngrößen von Stichprobenver-teilungen; Beispiele irreführender deskriptiver Statistiken; lineare Regression
– Elementare Begriffe und Techniken des Testens und Schätzens: Maximum-Likelihood-Prinzip; Konfidenzinter-valle; Hypothesentests; Fehler erster und zweiter ArtLiteraturhinweise
E. Behrends: Elementary Stochastics, Springer, 2013
H.-O. Georgii: Stochastics: Introduction to Probability Theory and Statistics, De Gruyter, 2007
U. Krengel: Introduction to probability theory and statistics, Vieweg, 2005
D. Meintrup, S. Schäffler, Stochastics: Theory and Applications, Springer, 2005.
Most of the books listed below are available online at the UB. For this purpose, there is an extensive hand apparatus for stochastics in the mathematic library. -
19220941
Zentralübung
Zentralbung zu Wahrscheinlichkeit und Statistik (N.N.)
Zeit: Di 10:00-12:00, Di 14:00-16:00, Mi 10:00-12:00, Fr 08:00-10:00 (Erster Termin: 14.10.2025)
Ort: A6/SR 007/008 Seminarraum (Arnimallee 6)
-
19220901
Vorlesung
-
Proseminar Mathematik - Lehramt (5 LP)
0082fA3.2-
19201510
Proseminar
Proseminar zur linearen Algebra (Alexander Schmitt)
Zeit: Mo 14:00-16:00 (Erster Termin: 13.10.2025)
Ort: A3/SR 119 (Arnimallee 3-5)
Kommentar
In dem Proseminar soll es um eine Anwendung der Linearen Algebra auf Big Data gehen. Genauer gesagt möchten wir uns anschauen, wie einem Datensatz ein Strichcode zugeordnet wird. Dieses Verfahren wurde von Carlsson und Kolleg:innen entwickelt. Hauptbestandteil ist letztendlich ein Resultat aus der Linearen Algebra, das im Rahmen der sogenannten Köcherdarstellungen von Gabriel in den 1970er Jahren bewiesen und von Carlsson sozusagen wiederentdeckt wurde. Dieses Resultat soll in dem für Big Data relevanten Fall besprochen werden.
Auf dem Weg dorthin werden wir etwas elementare Graphentheorie mit interessanten Anwendungen kennenlernen, die Theorie der Köcherdarstellungen einführen, simpliziale Komplexe, mit denen geometrische Gebilde kodiert werden, betrachten und sehen, wie man mit Hilfe von Linearer Algebra simplizialen Komplexen Invarianten zuordnen kann.
Es gibt elementare Vorträge, aber auch Vorträge, die dem Schwierigkeitsgrad der Jordanschen Normalform entsprechen und evtl. auch darüber hinausgehen.
Bei Interesse berate ich Sie gern.
Als Vorlage dienen Kapitel I und II aus dem Skript
A. Schmitt: Lineare Algebra II
https://userpage.fu-berlin.de/~aschmitt/SkriptLAII.pdf
-
19214010
Proseminar
Proseminar "Zaubertricks mit mathematischem Hintergrund" (Ehrhard Behrends)
Zeit: Mo 14:00-16:00 (Erster Termin: 20.10.2025)
Ort: A3/ 024 Seminarraum (Arnimallee 3-5)
Kommentar
Es sollen Zaubertricks mit mathematischem Hintergrund analysiert werden.
Literaturhinweise
Literatur: Mein 2017 bei Springer Spektrum erschienenes Buch "Zaubern und Mathematik" sowie einige Originalarbeiten zum Thema.
-
19214210
Proseminar
Proseminar "Mathematik für die Öffentlichkeit“ (Anna Maria Hartkopf)
Zeit: Termine siehe LV-Details (Erster Termin: 25.03.2026)
Ort: A6/SR 032 Seminarraum (Arnimallee 6)
-
19240317
Seminar/Proseminar
Mathematischer Fortschritt mit KI (Georg Loho)
Zeit: Di 14:00-16:00 (Erster Termin: 14.10.2025)
Ort: A3/SR 120 (Arnimallee 3-5)
Kommentar
Während Computer schon lange ein etabliertes Werkzeug in der Mathematik sind, führen die Entwicklungen rund um KI auch zu neuen Möglichkeiten für mathematischen Fortschritt.
In diesem Seminar werden wir grundlegende Prinzipien und Strategien betrachten (Verständnis mathematischen Folgerns, Experimentieren, Kreativität, Formalisierung), die von Entwicklungen rund um KI profitieren und zu neuen Entwicklungen in der Mathematik führen.
Dieses Seminar richtet sich hauptsächlich an Lehramtsstudierende Mathematik (Bachelor & Master), sowie Bachelorstudierende Mathematik. Der eingetragene regelmäßige Termin ist vorläufig und Tag / Uhrzeit kann noch mit den Teilnehmenden des Seminars am Anfang des Semesters angepasst werden.
-
19241710
Proseminar
Proseminar Panorama der Mathematik (Anna Maria Hartkopf)
Zeit: Mo 14:00-16:00 (Erster Termin: 20.10.2025)
Ort: A6/SR 009 Seminarraum (Arnimallee 6)
Literaturhinweise
- Hans Wußing, 6000 Jahre Mathematik: Eine kulturgeschichtliche Zeitreise;
- Band 1: Von den Anfängen bis Leibniz und Newton, Band 2: Von Euler bis zur Gegenwart, Springer 2009
- Heinz-Wilhelm Alten et al., 4000 Jahre Algebra, Springer 2008
- Christoph J. Scriba, 5000 Jahre Geometrie, Springer 2009
- Heinz-Niels Jahnke, Geschichte der Analysis: Texte zur Didaktik der Mathematik, Spektrum 1999
- Richard Courant und Herbert Robbins, Was ist Mathematik?, Springer 2010
- Phillip J. Davis, Reuben Hersh, The Mathematical Experience, Mariner Books 1999
- Knoebel, Arthur; Laubenbacher, Reinhard; Lodder, Jerry; Pengelley, David
- Mathematical masterpieces, Springer 2007
- Laubenbacher, Reinhard; Pengelley, David, Mathematical expeditions. Chronicles by the explorers, Springer 1999
- sowie abhängig vom Thema
-
19245910
Proseminar
Proseminar: Gute mathematische Hochschullehre (Jan-Hendrik de Wiljes, Benedikt Weygandt)
Zeit: Di 10:00-12:00 (Erster Termin: 14.10.2025)
Ort: A3/019 Seminarraum (Arnimallee 3-5)
Kommentar
Proseminar „Gute mathematische Hochschullehre“
Was passiert eigentlich, wenn Studierende Hochschullehre reflektieren und lernförderlich (um)gestalten?
Es ist immer einfach, bestehende Konzepte zu kritisieren ‒ aber davon alleine ändert sich ja nichts! Daher wollen wir die häufig geforderte studentische Partizipation wortwörtlich nehmen und euch die Gelegenheit geben, eure Erfahrungen, Expertise und Perspektive als Lernende in die Weiterentwicklung guter Hochschullehre einzubringen.
Lassen wir uns dafür mal auf ein ‒ vielleicht verrücktes? ‒ Gedankenexperiment ein:
- Was würde herauskommen, wenn Studierende eine für sie selbst sinnvolle und gute Mathe-Vorlesung gestalten? Oder gleich ein ganzes Modul?
- Welche Art von Tutorien haltet ihr für sinnvoll? Welche Tätigkeiten (denken, nachrechnen, diskutieren ...) sollten in den jeweiligen Veranstaltungen (VL, Übung, Zentralübung...) in welchem Format (frontal, einzeln, Gruppe ...) passieren?
- Und was ist mit dem Material: Wie sollten Übungsaufgaben aussehen? Skripte? Klausuren?
Ablauf
Nach einer kurzen allgemeinen Intro widmen wir uns jeweils für 3 Wochen einem Thema (Gestaltung von Vorlesungen, (Zentral-)Übungen, Skripten, Übungszetteln, Klausuren), sammeln Inspirationen und erarbeiten dann in Tandems jeweils unsere "guten" Ansätze aus.
Zum Abschluss des Semesters wollen wir die von euch erarbeiteten Ideen, Ansätze und Konzepte auch mit Hochschullehrenden diskutieren und ausprobieren!
Voraussetzungen
Wichtig ist, dass ihr bereits erste Erfahrungen mit Hochschullehre gemacht habt! Mindestens 2‒3 Anfangsvorlesungen in Mathematik sollten besucht worden sein. Es wird nicht so sehr um die dort vermittelten Inhalte gehen, sondern vielmehr darum, mathematisches Arbeiten an der Hochschule kennengelernt zu haben. Wichtiger als der einzelne Fachinhalt ist ein Grundverständnis für mathematische Denk- und Arbeitsweisen ‒ und insbesondere auch ein Interesse für zeitgemäße Lehre.
Hinweis: Es ist nicht vorgesehen, aufbauend auf dieses Proseminar eine Bachelorarbeit zu verfassen. Falls man diese passend zum Proseminar verfassen möchte, empfehlen wir eine der anderen angebotenen Veranstaltungen.
-
19201510
Proseminar
-
Computerorientierte Mathematik I (5 LP)
0082fA4.1-
19200501
Vorlesung
Computerorientierte Mathematik I (5 LP) (Claudia Schillings)
Zeit: Fr 12:00-14:00 (Erster Termin: 17.10.2025)
Ort: T9/Gr. Hörsaal (Takustr. 9)
Kommentar
Inhalt:
Computer spielen heute in (fast) allen Lebenslagen eine wichtige Rolle. Die Computerorientierte Mathematik vermittelt grundlegende Kenntnisse im Umgang mit Rechnern zur Lösung mathematischer Probleme und eine Einführung in das algorithmische Denken. Gleichzeitig wird aber auch typische mathematische Software wie Matlab und Mathematica eingeführt. Die nötige Motivation für die betrachteten Fragestellungen liefern einfache Anwendungsbeispiele aus den angesprochenen Fächern. Der Inhalt es ersten Teils umfasst fundamentale Begriffe des numerischen Rechnens: Zahlendarstellung und Rundungsfehler, Kondition, Effizienz und Stabilität.Homepage: Alle aktuellen Informationen zu Vorlesung und Übungen
Literaturhinweise
Literatur: R. Kornhuber, C. Schuette, A. Fest: Mit Zahlen Rechnen (Skript zur Vorlesung)
-
19200502
Übung
Übung zu Computerorientierte Mathematik I (N.N.)
Zeit: Mo 12:00-14:00, Mo 14:00-16:00, Di 08:00-10:00, Di 16:00-18:00, Mi 10:00-12:00, Do 14:00-16:00, Fr 08:00-10:00 (Erster Termin: 13.10.2025)
Ort: A6/SR 031 Seminarraum (Arnimallee 6)
-
19200501
Vorlesung
-
-
Mathematik entdecken II (5 LP) 0082fA1.2
-
Computerorientierte Mathematik II (5 LP) 0082fA4.2
-
Computeralgebra 0082fA4.3
-