WiSe 17/18  
Physik  
Kernfach Master...  
Lehrveranstaltung

Masterstudiengang Physik

Kernfach Master Physik (StO 2013)

0352b_MA120
  • Advanced Laboratory Course for Master Students

    0352bA1.1
    • 20102730 Praktikum
      Advanced Laboratory Course for Master Students (Kirill Bolotin)
      Zeit: Do 10:00-19:00 (Erster Termin: 19.10.2017)
      Ort: FP-R FP-Räume (Arnimallee 14)

      Hinweise für Studierende

      Zielgruppe:
      Master students of physics in the first or second semester.

      Zusätzl. Angaben / Voraussetzungen

      Registration deadline see online Advanced Laboratory Course

      Kommentar

      Inhalt:
      Advanced lab course in experimental physics. Experiments are performed in groups of two (and sometimes three) students. Every student has to participate in a total of eight experiments. The experimental work will be documented in a report. The lab course is accompanied by a seminar series (Mon, 5-7pm), where students present the experiments and jointly discuss their results and interpretation.

      Literaturhinweise

      Please consult the handouts and the web page of the lab course.

    • 20102711 Seminar
      Advanced Laboratory Course for Master Students (Kirill Bolotin)
      Zeit: Mo 14:00-16:00 (Erster Termin: 16.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

       

      Trial presentation to the seminar, each preceding Wednesday by appointment

      Kommentar

      Advanced lab course in experimental physics. Experiments are performed in groups of two (and sometimes three) students. Every student has to participate in a total of eight experiments. The experimental work will be documented in a report. The lab course is accompanied by a seminar series, where students present the experiments and jointly discuss their results and interpretation.

  • Selected Topics in Physics_2

    0352bA1.3
    • 20108111 Seminar
      Molecular Electronics (Katharina Franke)
      Zeit: Di 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20110311 Seminar
      Nanoplasmonics and plasmon-enhanced spectroscopy (Stephanie Reich)
      Zeit: Di 14:00-16:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.02.2018)
      Ort: Mo SR 006/T9 Seminarraum (Takustr. 9), Di SR 006/T9 Seminarraum (Takustr. 9), Mi SR 006/T9 Seminarraum (Takustr. 9), Do SR 006/T9 Seminarraum (Takustr. 9), Fr SR 006/T9 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 05.03.2018)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Prerequisites: Lecture "Methods of Molecular Simulations" or course by Markus Miettienen "Initiation to Biomolecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_3

    0352bA1.4
    • 20108111 Seminar
      Molecular Electronics (Katharina Franke)
      Zeit: Di 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20110311 Seminar
      Nanoplasmonics and plasmon-enhanced spectroscopy (Stephanie Reich)
      Zeit: Di 14:00-16:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.02.2018)
      Ort: Mo SR 006/T9 Seminarraum (Takustr. 9), Di SR 006/T9 Seminarraum (Takustr. 9), Mi SR 006/T9 Seminarraum (Takustr. 9), Do SR 006/T9 Seminarraum (Takustr. 9), Fr SR 006/T9 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 05.03.2018)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Prerequisites: Lecture "Methods of Molecular Simulations" or course by Markus Miettienen "Initiation to Biomolecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_4

    0352bA1.5
    • 20108111 Seminar
      Molecular Electronics (Katharina Franke)
      Zeit: Di 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20110311 Seminar
      Nanoplasmonics and plasmon-enhanced spectroscopy (Stephanie Reich)
      Zeit: Di 14:00-16:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.02.2018)
      Ort: Mo SR 006/T9 Seminarraum (Takustr. 9), Di SR 006/T9 Seminarraum (Takustr. 9), Mi SR 006/T9 Seminarraum (Takustr. 9), Do SR 006/T9 Seminarraum (Takustr. 9), Fr SR 006/T9 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 05.03.2018)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Prerequisites: Lecture "Methods of Molecular Simulations" or course by Markus Miettienen "Initiation to Biomolecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_1

    0352bA1.6
    • 20108111 Seminar
      Molecular Electronics (Katharina Franke)
      Zeit: Di 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20110311 Seminar
      Nanoplasmonics and plasmon-enhanced spectroscopy (Stephanie Reich)
      Zeit: Di 14:00-16:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.02.2018)
      Ort: Mo SR 006/T9 Seminarraum (Takustr. 9), Di SR 006/T9 Seminarraum (Takustr. 9), Mi SR 006/T9 Seminarraum (Takustr. 9), Do SR 006/T9 Seminarraum (Takustr. 9), Fr SR 006/T9 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 05.03.2018)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Prerequisites: Lecture "Methods of Molecular Simulations" or course by Markus Miettienen "Initiation to Biomolecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Advanced Quantum Mechanics

    0352bA2.1
    • 20104301 Vorlesung
      Advanced Quantum Mechanics (Ana-Nicoleta Bondar)
      Zeit: Mi 12:00-14:00, Fr 10:00-12:00 (Erster Termin: 18.10.2017)
      Ort: Mi 1.3.14 Hörsaal A (Arnimallee 14), Fr 1.3.14 Hörsaal A (Arnimallee 14)

      Hinweise für Studierende

      Zielgruppe:
      Studenten, die Quantentheorie I gehört haben.

      Kommentar

      Scattering theory, quantum theory of radiation, systems of identical particles, relativistic quantum mechanics

      Literaturhinweise

      • J. J. Sakurai, "Modern Quantum Mechanics" (Addison-Wesley, 1993);
      • J. J. Sakurai, "Advanced Quantum Mechanics" (Addison-Wesley, 1967);
      • K. Gottfried and T.-M. Yan, "Quantum Mechanics: Fundamentals" (Springer, 2003); A. Messiah, "Quantum Mechanics" (Dover, 1999).

    • 20104302 Übung
      Advanced Quantum Mechanics (Ana-Nicoleta Bondar)
      Zeit: Di 16:00-18:00, Mi 14:00-16:00, Fr 08:00-10:00 (Erster Termin: 24.10.2017)
      Ort: Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Advanced Statistical Physics

    0352bA2.3
    • 20114301 Vorlesung
      Advanced Statistical Physics II (Roland Netz)
      Zeit: Mo 10:00-12:00, Mi 10:00-12:00, zusätzliche Termine siehe LV-Details (Erster Termin: 16.10.2017)
      Ort: Mo 1.3.14 Hörsaal A (Arnimallee 14), Mi 1.3.14 Hörsaal A (Arnimallee 14)

      Kommentar

      Topics:

      • review of phenomenological thermodynamics
      • non-equilibrium thermodynamics (entropy production, Onsager relations) 
      • causality and fluctuations 
      • stochastic processes (Markov processes, Master equation, Langevin and Fokker-Planck equation)
      • kinetic theory
      • phase transitions (Landau theory, Gaussian fluctuations, correlation functions, renormalization theory)
      •  theory of liquids, hydrodynamic and elasticity theory

      Literaturhinweise

      Literature:

      • Non-equilibrium thermodynamics, de Groot and Mazur
      • The Fokker-Planck Equation, Risken
      • Stochastic processes in physics and chemistry, N. G. van Kampen

    • 20114302 Übung
      Advanced Statistical Physics II (Roland Netz)
      Zeit: Di 14:00-16:00, Fr 14:00-16:00 (Erster Termin: 24.10.2017)
      Ort: Di 1.1.16 FB-Raum (Arnimallee 14), Fr 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Advanced Solid State Physics

    0352bA2.5
    • 20104601 Vorlesung
      Advanced Solid State Physics (Martin Weinelt)
      Zeit: Di 12:00-14:00, Fr 12:00-14:00, zusätzliche Termine siehe LV-Details (Erster Termin: 17.10.2017)
      Ort: Di 0.1.01 Hörsaal B (Arnimallee 14), Fr 0.1.01 Hörsaal B (Arnimallee 14)

      Hinweise für Studierende

      Target group: Master students during the coursework phase.

      Requirements: Solid state physics and quantum mechanics are helpful.

      Kommentar

      The lecture aims to establish a link between the fundamentals of solid state physics and specialized lectures on actual research topics. The following topics will be covered:

       

      • Structure of solids, thin films, and surfaces
      • Electronic states in 3-, 2-, and 1-dimensional solids, quantum stability
      • Magnetism, phase transitions, magnetoresistance, principles of spin electronics

      The course program will cover the basics of each topic but likewise discuss current methods and problems of solid state physics. The relevant experimental techniques (diffraction and imaging techniques, spectroscopic techniques, and magnetometry) will be introduced and discussed using examples from actual research.

      Literaturhinweise

      - Ashcroft/Mermin: Solid state physics;

      - Kittel: Introduction to solid state physics;

      - Lüth: Solid surfaces, interfaces and thin films;

      - Bland and Heinrich: Ultrathin magnetic structures

    • 20104602 Übung
      Advanced Solid State Physics (Martin Weinelt)
      Zeit: Di 16:00-18:00, Mi 08:00-10:00 (Erster Termin: 24.10.2017)
      Ort: Di 1.3.48 Seminarraum T3 (Arnimallee 14), Mi 1.3.48 Seminarraum T3 (Arnimallee 14)
  • Special Topics in Magnetism

    0352bA3.11
    • 20108901 Vorlesung
      Magnetism in reduced dimensions and spin transport (Wolfgang Kuch)
      Zeit: Mi 10:00-12:00, zusätzliche Termine siehe LV-Details (Erster Termin: 18.10.2017)
      Ort: 0.1.01 Hörsaal B (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      www.physik.fu-berlin.de/einrichtungen/ag/ag-kuch/teaching

      Kommentar

      The field of magnetic nanostructures and spin transport has continuously spawned highly valued discoveries over the past years and is still  under a rapid and lively development. Fundamental research in this field is fueled by the vision of dissipationless information processing when using pure spin currents instead of elecronic charge currents like in conventional semiconductor electronics. Top-level publications from this field receive thus an enormous degree of attention.

      This lecture will lead from an introduction into the basics of spin and magnetism in reduced dimensions to some of the most fascinating recent examples of actual research. It will cover the following contents:

      • Magnetic anisotropy
      • Interlayer exchange coupling
      • Molecular magnetism
      • Spin injection
      • Magnetoresistance effects and spintronics
      • Pure spin currents
      • Spin caloritronics
      • Antiferromagnetic spintronics
      • Magnetic domains and domain-wall motion
      • Topological spin structures
      • Magnetization dynamics

      Literaturhinweise

      • Original publications in scientific journals (available online from within FU)
      • J. A. C. Bland and B. Heinrich (Eds.), Ultrathin Magnetic Structures I-III (Springer) (available online from within FU)
      • S. Bandyopadhyay and M. Cahay, Introduction to Spintronics (CRC Press)
      • B. Hillebrands and K. Ounadjela (Eds.), Spin Dynamics in Confined Magnetic Structures I-III (Springer)

    • 20108902 Übung
      Magnetism in reduced dimensions and spin transport (Wolfgang Kuch)
      Zeit: Mi 14:00-16:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Special Topics in Molecular Biophysics

    0352bA3.13
    • 20104901 Vorlesung
      Production of biological samples in biophysics (Ramona Schlesinger)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.03.2018)
      Ort: Mo - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Di - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Mi - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Do - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Fr - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14)

      Hinweise für Studierende

      Master students, diploma strudents and PhD students with interest in generating their biological samples by themselves for biophysical investigations

      Zusätzl. Angaben / Voraussetzungen

      max. 6 Plätze; Nachrückerliste: r.schlesinger@fu-berlin.de

      Kommentar

      Lectures about how to mutagenise a protein, cloning techniques, expression and purification of proteins will be given prior to the practical exercises in the lab.

    • 20104902 Übung
      Production of biological samples in biophysics (Ramona Schlesinger)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.03.2018)
      Ort: keine Angabe

      Kommentar

      Practical exercises : -molecular biological techniques e.g. transformation of bacteria with plasmids in preparation of expressing a membrane protein -cultivation of bacteria to express the protein -purification of membrane proteins by affinity chromatography -analysis of DNA and protein preparations by agarose- and SDS-gelelectrophoresis

  • Advanced Astronomy and Astrophysics

    0352bA3.14
    • 20103230 Praktikum
      Astrophysical practical course (Antonio Garcia-Munoz)
      Zeit: Mo 12:00-16:00 (Erster Termin: 16.10.2017)
      Ort: Praktikumsräume in der Takustr. 3a

      Zusätzl. Angaben / Voraussetzungen

      ANMERKUNGEN:

      Empowering to participate is limited and is done in sequence of registration. Registration will be open between 01.10. – 15.10.2017. To enroll, please send an e-mail to praktikum@astro.physik.tu-berlin.de with the keyword „Praktikum“

      ZIELG RUPPE:

      Practical part of the module „Advanced Astronomy and Astrophysics“ (Physics / Master). Constitutes a module for the Master course only together with two accompanying lectures.  Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG:

      Postgraduate practical course on astronomy and astrophysics. Knowledge of the Physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Method: teamwork (small groups) on different astronomical topics. Subject: Classification of stars, RV method, rotation of the Sun, stellar spectroscopy with CCD camera, observation with telescopes, astronomical systems of coordinates, galactic rotation curve

    • 20108530 Praktikum
      Computational astrophysical practical course (Numerikum) (Jenny Feige, Antonio Garcia-Munoz)
      Zeit: Mo 16:00-20:00 (Erster Termin: 16.10.2017)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, room EW 176 / EW 177

      Zusätzl. Angaben / Voraussetzungen

      ANMERKUNGEN:

      Empowering to participate is limited and is done in sequence of registration! Registration will be open between 01.10. and 15.10.2017. To enroll, please send an e-mail to  numerikum@astro.physik.tu-berlin.de with the keyword „Numerikum“.

      ZIELGRUPPE:

      Practical part of the  module „Advanced Astronomy and Astrophysics“ (Physics / Master). Constitutes a module for the Master course only together with two accompanying lectures.  Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG:

      Postgraduate practical course on astronomy and astrophysics. Programming knowledge (e.g. in C, C++, Fortran, Java, Perl etc.) is advised to participate in this course. Knowledge of the Physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ is advised.

      Kommentar

      Numerical methods for solving astrophysical problems in hydrodynamics, stellar dynamics, cosmic rays or dust physics related to the current research at the Zentrum für Astronomie und Astrophysik. Studensts will write small programs as well as work with existing programs (written in Fortran 90).

    • 20108601 Vorlesung Abgesagt
      Grundlagen der Planetenphysik (Heike Rauer)
      Zeit: Mo 10:00-12:00 (Erster Termin: 16.10.2017)
      Ort: keine Angabe

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE:

      Für den Fall, dass die VL auf deutsch gehalten wird, kann sie auf Antrag als Teil in das Modul „Advanced Astronomy and Astrophysics“ (Physics / Master) eingebracht werden. Offen für alle Studierenden mit Interesse an Astronomie und Astrophysik.

      Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics/Master). Open also for all students with interest in astronomy and astrophysics.

       

      VORAUSSETZUNG:

      Grundkenntnisse in Physik und Mathematik. Besuch des B.Sc./Physik Moduld „Einführung in die Astronomie und Astrophysik“ empfohlen.

      Kommentar

      The lecture will provide an overview of the planets, moons and small bodies in our Solar System. Topics are: planetary dynamics, planetary surfaces, age determination, planet formation, interior structure and composition, atmospheres, magnetic fields, habitability, comets and asteroids, the icy moons, extra solar planets.

    • 20110501 Vorlesung
      Stellar Winds (Beate Patzer)
      Zeit: Di 12:00-14:00 (Erster Termin: 17.10.2017)
      Ort: TU Berlin, Hardenebrgstr. 36, Eugen-Wigner-Gebäude, Raum EW 226

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE:

      Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master). Open for all students with interest in astronomys and astrophysics.

      VORAUSSETZUNG

      Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Stellar mass loss (thermical velocities, mass loss rates), wind mechanisms, wind equation, pressure driven winds (sun, Berker solutions), radiation driven winds:

      1. hot stars, role of spectral lines,
      2. cool stars, dust driven stellar winds, numerical modelling, circumstellar envelopes of

    • 20110601 Vorlesung
      Molecular Astrohysics of Stars and Galaxies (Beate Patzer)
      Zeit: Do 10:00-12:00 (Erster Termin: 19.10.2017)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Wigner-Gebäude Raum EW 226

      Kommentar

      INHALT:

      Molecular properties of astrophysically relevant molecules, molecules in the early universe, chemistry at the birth of stars and galaxies, theory of circumstellar dust shells, supernova

      ZIELGRUPPE:

      Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master). Open for all studenst with interest in astronomy and astrophysics.

      VORAUSSETZUNG:

      Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

    • 20120501 Vorlesung
      Nuclear Astrophysics (Jenny Feige)
      Zeit: Mi 12:00-14:00 (Erster Termin: 18.10.2017)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, Raum EW 229

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE: Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master).Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG: Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Elemental abundances in the solar system, nuclear physics (nuclear models, nuclear reactions and reaction rates), nucleosynthesis (Big Bang, stars, cosmic rays), experimental methods in

    • 20120801 Vorlesung
      Physics of the planetary interior (Nicola Tosi)
      Zeit: Mi 14:00-16:00 (Erster Termin: 18.10.2017)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, Raum EW 229

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE: Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics/Master). Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG: Kenntnisse in Physik und Mathematik. Bachelor-Abschluss erwünscht.

      Kommentar

      Gravity and interior structure of planets and satellites; elasticity and deformation of planetary lithospheres; heat generation and transfer in planetary interiors; convection and thermal evolution of terrestrial.

  • Modern Methods in Theoretical Physics B_1

    0352bA3.19
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 16.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This course presents methods to compute thermodynamic and kinetic properties from molecular simulation data. Methods to generate such data are discussed, complementing the courses "Methods of molecular simulations" and "Molecular simulation II", respectively.

      Topics:

      • brief repetition of statistical mechanics: ensembles, phase space, equilibrium distribution;
      • Metropolis and Markov chain Monte-Carlo; Molecular dynamics;
      • Hybrid Monte-Carlo;
      • Transition matrix;
      • Langevin dynamics, Correlation functions and other data analysis methods

    • 20115702 Übung
      Computational Molecular Physics (Felix Höfling, Petra Imhof)
      Zeit: Di 16:00-18:00 (Erster Termin: 24.10.2017)
      Ort: T9/K 036 Rechnerpoolraum (Takustr. 9)
  • Modern Methods in Theoretical Physics B_2

    0352bA3.20
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 16.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This course presents methods to compute thermodynamic and kinetic properties from molecular simulation data. Methods to generate such data are discussed, complementing the courses "Methods of molecular simulations" and "Molecular simulation II", respectively.

      Topics:

      • brief repetition of statistical mechanics: ensembles, phase space, equilibrium distribution;
      • Metropolis and Markov chain Monte-Carlo; Molecular dynamics;
      • Hybrid Monte-Carlo;
      • Transition matrix;
      • Langevin dynamics, Correlation functions and other data analysis methods

    • 20115702 Übung
      Computational Molecular Physics (Felix Höfling, Petra Imhof)
      Zeit: Di 16:00-18:00 (Erster Termin: 24.10.2017)
      Ort: T9/K 036 Rechnerpoolraum (Takustr. 9)
  • Modern Methods in Theoretical Physics B_3

    0352bA3.21
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 16.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This course presents methods to compute thermodynamic and kinetic properties from molecular simulation data. Methods to generate such data are discussed, complementing the courses "Methods of molecular simulations" and "Molecular simulation II", respectively.

      Topics:

      • brief repetition of statistical mechanics: ensembles, phase space, equilibrium distribution;
      • Metropolis and Markov chain Monte-Carlo; Molecular dynamics;
      • Hybrid Monte-Carlo;
      • Transition matrix;
      • Langevin dynamics, Correlation functions and other data analysis methods

    • 20115702 Übung
      Computational Molecular Physics (Felix Höfling, Petra Imhof)
      Zeit: Di 16:00-18:00 (Erster Termin: 24.10.2017)
      Ort: T9/K 036 Rechnerpoolraum (Takustr. 9)
  • Modern Methods in Theoretical Physics B_4

    0352bA3.22
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 16.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This course presents methods to compute thermodynamic and kinetic properties from molecular simulation data. Methods to generate such data are discussed, complementing the courses "Methods of molecular simulations" and "Molecular simulation II", respectively.

      Topics:

      • brief repetition of statistical mechanics: ensembles, phase space, equilibrium distribution;
      • Metropolis and Markov chain Monte-Carlo; Molecular dynamics;
      • Hybrid Monte-Carlo;
      • Transition matrix;
      • Langevin dynamics, Correlation functions and other data analysis methods

    • 20115702 Übung
      Computational Molecular Physics (Felix Höfling, Petra Imhof)
      Zeit: Di 16:00-18:00 (Erster Termin: 24.10.2017)
      Ort: T9/K 036 Rechnerpoolraum (Takustr. 9)
  • Modern Methods in Experimental Physics A_1

    0352bA3.26
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 20.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 18.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 22, 2018 - February 28, 2018, Location: SR E2 (1.1.53). Please Email Registration until January,15, 2018, to jens.balke@fu-berlin.de )

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 27.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_2

    0352bA3.27
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 20.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 18.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 22, 2018 - February 28, 2018, Location: SR E2 (1.1.53). Please Email Registration until January,15, 2018, to jens.balke@fu-berlin.de )

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 27.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_3

    0352bA3.28
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 20.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 18.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 22, 2018 - February 28, 2018, Location: SR E2 (1.1.53). Please Email Registration until January,15, 2018, to jens.balke@fu-berlin.de )

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 27.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_4

    0352bA3.29
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 20.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 18.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 22, 2018 - February 28, 2018, Location: SR E2 (1.1.53). Please Email Registration until January,15, 2018, to jens.balke@fu-berlin.de )

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 27.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 22.02.2018)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics C_1

    0352bA3.34
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 24.10.2017)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Modern Methods in Experimental Physics C_2

    0352bA3.35
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 24.10.2017)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Modern Methods in Experimental Physics C_3

    0352bA3.36
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 17.10.2017)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 24.10.2017)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Spectroscopy with Synchrotron Radiation

    0352bA3.5
    • 20106201 Vorlesung
      Modern developments in X-Ray and Neutron Methods for Science and Technology for Master (Alexei Erko)
      Zeit: Di 16:00-18:00 (Erster Termin: 17.10.2017)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Further information about the lectures: Hompage A. Erko

      Kommentar

      Modern sources of synchrotron radiation (SR) and neutrons are very powerful tools in a wide range of important research activities, ranging from biology and medicine to solid state physics and micro/nano-technology. This lecture series will provide basic knowledge of the operational principles, control and manipulation of SR and neutron beams and describe their main characteristics. X-ray and neutron optics will be described in detail, explaining basic experimental techniques such as absorption, photoelectron spectroscopy, diffraction analysis and wide/small angle scattering for both beam types. The program also includes future perspectives for new source developments, i.e. X-ray Free Electron Lasers (FEL), Energy-Recovery X-ray Sources and new Neutron Sources. Practical sessions will take place at the BESSY II storage ring in Adlershof and the neutron source BER II at Wannsee, providing students access to state-of-the-art instrumentation and methods.

      Literaturhinweise

      <ol>

      • 1. X-ray Scienece and technology eds. A.G. Michette, C.J. Buckley IOP Publishing, Bristol, 1993
      • 2. W. B. Peatman, Gratings, Mirrors and Slits, Gordon and Breach Science Publishing, 1997
      • 3. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications, Cambridge University Press, 1999)
      • 4. A. Erko, V.V. Aristov, B. Vidal, Diffraction X- ray Optics, IOP Publishing, Bristol, 1996
      • 5. "Modern developments in X-Ray and Neutron optics", Eds. A. Erko, Th. Krist, M. Idir, A. Michette, Springer, 2008
      • 6. "Neutron Optics", Sears V. F., Oxford University Press, 1989 7.
      • 7. "Neutron Physics", Ed. G. Hoehler, Springer Tracts in Mod. Phys. 80, Springer Berlin, 1977

    • 20106230 Praktikum
      Modern developments in X-Ray and Neutron Methods for Science and Technology for Master (Alexei Erko)
      Zeit: Fr 15:00-17:00 (Erster Termin: 27.10.2017)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)

      Hinweise für Studierende

      Beginn:24.10.2014 Begleittermine: Freitag ab 15 Uhr- Albert-Einstein Str. 15, Adlershof, BESSY II oder Hahn-Meitner-Platz 1, BER II. Aktuelle Termine bitte der Hompage A. Erkoentnehmen

  • Photobiophysics and Photosynthesis

    0352bA3.6
    • 20103801 Vorlesung
      Molecular Bioenergetics in Oxygenic Photosynthesis (Holger Dau, Yvonne Zilliges)
      Zeit: Termine siehe LV-Details (Erster Termin: 19.01.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      One week course, daily from 9-18 o´clock in the lecture-free period, teaching/training in small groups by means of lectures combined with short presentations and practical lab exercises (plus time for preparation before start of the course and protocols throughout the term of the course).

      In this intense course, the number of participants is limited (6-8 students). Please send a pre-registration by e-Mail to: yvonne.zilliges@fu-berlin.de.

      Ansprechpartner: Dr. Yvonne Zilliges (Tel. 56535), Prof. Dr. Holger Dau

      Kommentar

      Oxygenic photosynthesis is the process that powers life on earth. It has shaped the atmosphere by CO2 consumption and O2 production. Today oxygenic photosynthesis also serves as a blueprint for the large-scale production of non-fossil fuels, using merely water and CO2 as raw materials. By closely interfaced lecture periods and lab experiments, the following topics are addressed:

      THE BASICS: Evolution and current types of photosynthetic organisms, basic mechanisms of the photosynthetic light reactions and dark reactions

      METHODS: Purification of functional photosynthetic membrane particles and protein complexes, biophysical standard methods in photosynthesis research, genetic modification of photosynthetic protein complexes as a tool in biophysical research.

      SPECIAL TOPICS: Bio-Hydrogen and Bio-Diesel production by photosynthetic organisms – an overview.

    • 20103802 Übung
      Molecular Bioenergetics in Oxygenic Photosynthesis (Holger Dau, Yvonne Zilliges)
      Zeit: Termine siehe LV-Details (Erster Termin: 05.03.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • Semiconductor Physics

    0352bA3.7
    • 20106301 Vorlesung
      Semiconductor Physics (Jan Behrends)
      Zeit: Mo 10:00-12:00, zusätzliche Termine siehe LV-Details (Erster Termin: 16.10.2017)
      Ort: 1.3.48 Seminarraum T3 (Arnimallee 14)

      Kommentar

      This course provides a general overview about the electrical and optical properties of semiconductors and their application in devices such as diodes, solar cells and transistors. The following topics will be covered:
       

      • Elementary Properties of Semiconductors
      • Crystal Structure o Energy Bands
      • Semiconductor Statistics
      • Charge Transport
      • Excitations and Optical Properties
      • Contacts and Interfaces o Semiconductor Devices
      • Amorphous Inorganic Semiconductors
      • Organic Semiconductors

      Literaturhinweise

      • Karlheinz Seeger: "Semiconductor Physics" (9th Edition, Springer, 2004) o Peter Y. Yu, Manuel Cardona: "Fundamentals of Semiconductors" (4th Edition, Springer, 2010)
      • S.M. Sze: "Physics of Semiconductor Devices" (2nd Edition, Wiley, 1981)
      • A.J. Heeger, N.S. Sariciftci, E.B. Namdas: "Semiconducting and Metallic Polymers" (Oxford University Press, 2010)

    • 20106302 Übung
      Semiconductor Physics (Jan Behrends)
      Zeit: Mi 10:00-12:00 (Erster Termin: 25.10.2017)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • History of Physics

    0352bA3.9
    • 20103101 Vorlesung Abgesagt
      Wartime/Peacetime: Physics in Nazi-Germany, World War II and After (Elvira Scheich)
      Zeit: Fr 14:00-16:00 (Erster Termin: 20.10.2017)
      Ort: keine Angabe

      Kommentar

      The positions of physicists towards the NS-regime featured the full range of conducts and experiences: refugees, collaborators, resistance, followers, survivors. However, with the discovery of nuclear fission and the subsequent efforts to utilize the enormous released energies the physicists left normalcy and be came major players in the further development of World War II. During the first part of the course we will study these historical changes through the biographies of the participants. The war ended with the atomic bombs over the Japanese cities Hiroshima and Nagasaki in August 1945. In the second part of the course we will look at how the professional memory of the recent past was constructed. How did physicists see their responsibility and what were the actions that were taken? Which differences became acute during the Cold War and how were they related to the events in the past?

    • 20103102 Übung Abgesagt
      Wartime/Peacetime: Physics in Nazi-Germany, World War II and After (Elvira Scheich)
      Zeit: Fr 16:00-17:00 (Erster Termin: 27.10.2017)
      Ort: keine Angabe
    • Selected Topics in Physics_1 0352bA1.2
    • Statistical Physics and Thermodynamics 0352bA2.2
    • Quantum Field Theory and Many Body Physics 0352bA2.4
    • Advanced Atomic and Molecular Physics 0352bA2.6
    • Advanced Biophysics 0352bA2.7
    • Theoretical Solid State Physics 0352bA3.1
    • Advanced Topics of Theoretical Condensed Matter Physics 0352bA3.10
    • Special Topics in Molecular Physics 0352bA3.12
    • Modern Methods in Theoretical Physics A_1 0352bA3.15
    • Modern Methods in Theoretical Physics A_2 0352bA3.16
    • Modern Methods in Theoretical Physics A_3 0352bA3.17
    • Modern Methods in Theoretical Physics A_4 0352bA3.18
    • Advanced Theoretical Biophysics 0352bA3.2
    • Modern Methods in Theoretical Physics C_1 0352bA3.23
    • Modern Methods in Theoretical Physics C_2 0352bA3.24
    • Modern Methods in Theoretical Physics C_3 0352bA3.25
    • Nanophysics 0352bA3.3
    • Modern Methods in Experimental Physics B_1 0352bA3.30
    • Modern Methods in Experimental Physics B_2 0352bA3.31
    • Modern Methods in Experimental Physics B_3 0352bA3.32
    • Modern Methods in Experimental Physics B_4 0352bA3.33
    • Ultrafast Spectroscopy and Nonlinear Optics 0352bA3.4
    • General Relativity 0352bA3.8
    • Scientific Specialization 0352bB1.1
    • Methodology and Project Planning 0352bB1.2
    • Seminar zur Masterarbeit 0352bE1.2