WiSe 18/19  
Physik  
Kernfach Master...  
Lehrveranstaltung

Masterstudiengang Physik

Kernfach Master Physik (StO 2013)

0352b_MA120
  • Advanced Laboratory Course for Master Students

    0352bA1.1
    • 20102730 Praktikum
      Advanced Laboratory Course for Master Students (Cornelius Gahl)
      Zeit: Do 10:00-19:00 (Erster Termin: 18.10.2018)
      Ort: FP-R FP-Räume (Arnimallee 14)

      Hinweise für Studierende

      Zielgruppe:
      Master students of physics in the first or second semester.

      Zusätzl. Angaben / Voraussetzungen

      Registration deadline see online Advanced Laboratory Course

      Kommentar

      Inhalt:
      Advanced lab course in experimental physics. Experiments are performed in groups of two (and sometimes three) students. Every student has to participate in a total of eight experiments. The experimental work will be documented in a report. The lab course is accompanied by a seminar series (Mon, 5-7pm), where students present the experiments and jointly discuss their results and interpretation.

      Literaturhinweise

      Please consult the handouts and the web page of the lab course.

    • 20102711 Seminar
      Advanced Laboratory Course for Master Students (Cornelius Gahl)
      Zeit: Mo 14:00-16:00, zusätzliche Termine siehe LV-Details (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Advanced lab course in experimental physics. Experiments are performed in groups of two (and sometimes three) students. Every student has to participate in a total of eight experiments. The experimental work will be documented in a report. The lab course is accompanied by a seminar series, where students present the experiments and jointly discuss their results and interpretation.

      For registration and further information please visit    http://www.physik.fu-berlin.de/studium/praktika-forward/index.html

  • Selected Topics in Physics_2

    0352bA1.3
    • 20010511 Seminar
      Advanced Statistical Physics of Biological and Soft-Matter Systems (Roland Netz)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Hinweise für Studierende

      Participation of M.Sc. students with a background in statistical physics is encouraged.

      Kommentar

      Seminar presentations of recent articles on various topics related to the statistical mechanics description of biological and soft-matter systems. All participants are expected to have read the articles before the meeting.

    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: T9/SR 006 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20112811 Seminar Abgesagt
      Artificial Photosynthesis - Science for the Energy Transition (Holger Dau)
      Zeit: Di 16:00-18:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20113811 Seminar
      Nanotechnology - Fundamentals and Applications (Martin Wolf)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.03.2019)
      Ort: Mo 1.1.26 Seminarraum E1 (Arnimallee 14), Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.1.26 Seminarraum E1 (Arnimallee 14), Do 1.1.26 Seminarraum E1 (Arnimallee 14), Fr 1.1.26 Seminarraum E1 (Arnimallee 14)
    • 20113911 Seminar
      A Second Generation of Quantum Technology (Torsten Siebert)
      Zeit: Mo 16:00-18:00 (Erster Termin: 15.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      The insight that quantum mechanics offers into the nature of matter at the microscopic level has inspired a wide range of technologies reaching into virtually every aspect of modern industrial society. Transistors, lasers, magnetic resonance tomography and atomic clocks are prominent examples of first generation quantum technologies operating with effects from large ensembles of quantum particles. A series of exceptional achievements in theory and experiments indicate that this first “quantum revolution” will not be the last [1-3]. A seemingly trivial switch to addressing the state of individual quantum particles or quasi-particles as well as their correlations and entanglement opens a regime of effects for new technological innovations rooted in the Einstein-Podolsky-Rosen-Paradoxon [4,5]. How does this fundamental concept in quantum physics translate to new technologies? Can "spooky action at a distance" guarantee the security of digital information and communication in the future? Is "ghost imaging" a technique that will address seemingly unsolvable problems in modern optics? What lies behind the terminology "quantum supremacy" in the comparison of classical und quantum computing and where is the quantum approach truly advantageous? The seminar will address these and other questions along with the fundamentals behind modern "second generation" quantum technologies.

      Literaturhinweise

      [1] Nobel Prize in Physics 2012: Serge Haroche and David J. Wineland: "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

      [2] Wolf Prize in Physics 2010: Alain Aspect, John Clauser and Anton Zeilinger: "For their fundamental conceptual and experimental contributions to the foundations of quantum physics, specifically an increasingly sophisticated series of tests of Bell's inequalities or extensions thereof using entangled quantum states”     

      [3] Richard P. Feynman, "Simulating Physics with Computers" Int. J. Theor. Phys. 21 (1982) 467.

      [4] Albert Einstein, Boris Y. Podolsky and Nathan Rosen, "Can a quantum-mechanical description of physical reality be considered complete?" Phys. Rev. Lett. 47 (1935) 777.  

      [5] John. S. Bell, "On the Einstein-Podolsky-Rosen Paradoxon" Physics 1 (1964) 195.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Recommended after attending the lecture "Methods of Molecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_3

    0352bA1.4
    • 20010511 Seminar
      Advanced Statistical Physics of Biological and Soft-Matter Systems (Roland Netz)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Hinweise für Studierende

      Participation of M.Sc. students with a background in statistical physics is encouraged.

      Kommentar

      Seminar presentations of recent articles on various topics related to the statistical mechanics description of biological and soft-matter systems. All participants are expected to have read the articles before the meeting.

    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: T9/SR 006 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20112811 Seminar Abgesagt
      Artificial Photosynthesis - Science for the Energy Transition (Holger Dau)
      Zeit: Di 16:00-18:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20113811 Seminar
      Nanotechnology - Fundamentals and Applications (Martin Wolf)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.03.2019)
      Ort: Mo 1.1.26 Seminarraum E1 (Arnimallee 14), Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.1.26 Seminarraum E1 (Arnimallee 14), Do 1.1.26 Seminarraum E1 (Arnimallee 14), Fr 1.1.26 Seminarraum E1 (Arnimallee 14)
    • 20113911 Seminar
      A Second Generation of Quantum Technology (Torsten Siebert)
      Zeit: Mo 16:00-18:00 (Erster Termin: 15.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      The insight that quantum mechanics offers into the nature of matter at the microscopic level has inspired a wide range of technologies reaching into virtually every aspect of modern industrial society. Transistors, lasers, magnetic resonance tomography and atomic clocks are prominent examples of first generation quantum technologies operating with effects from large ensembles of quantum particles. A series of exceptional achievements in theory and experiments indicate that this first “quantum revolution” will not be the last [1-3]. A seemingly trivial switch to addressing the state of individual quantum particles or quasi-particles as well as their correlations and entanglement opens a regime of effects for new technological innovations rooted in the Einstein-Podolsky-Rosen-Paradoxon [4,5]. How does this fundamental concept in quantum physics translate to new technologies? Can "spooky action at a distance" guarantee the security of digital information and communication in the future? Is "ghost imaging" a technique that will address seemingly unsolvable problems in modern optics? What lies behind the terminology "quantum supremacy" in the comparison of classical und quantum computing and where is the quantum approach truly advantageous? The seminar will address these and other questions along with the fundamentals behind modern "second generation" quantum technologies.

      Literaturhinweise

      [1] Nobel Prize in Physics 2012: Serge Haroche and David J. Wineland: "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

      [2] Wolf Prize in Physics 2010: Alain Aspect, John Clauser and Anton Zeilinger: "For their fundamental conceptual and experimental contributions to the foundations of quantum physics, specifically an increasingly sophisticated series of tests of Bell's inequalities or extensions thereof using entangled quantum states”     

      [3] Richard P. Feynman, "Simulating Physics with Computers" Int. J. Theor. Phys. 21 (1982) 467.

      [4] Albert Einstein, Boris Y. Podolsky and Nathan Rosen, "Can a quantum-mechanical description of physical reality be considered complete?" Phys. Rev. Lett. 47 (1935) 777.  

      [5] John. S. Bell, "On the Einstein-Podolsky-Rosen Paradoxon" Physics 1 (1964) 195.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Recommended after attending the lecture "Methods of Molecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_4

    0352bA1.5
    • 20010511 Seminar
      Advanced Statistical Physics of Biological and Soft-Matter Systems (Roland Netz)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Hinweise für Studierende

      Participation of M.Sc. students with a background in statistical physics is encouraged.

      Kommentar

      Seminar presentations of recent articles on various topics related to the statistical mechanics description of biological and soft-matter systems. All participants are expected to have read the articles before the meeting.

    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: T9/SR 006 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20112811 Seminar Abgesagt
      Artificial Photosynthesis - Science for the Energy Transition (Holger Dau)
      Zeit: Di 16:00-18:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20113811 Seminar
      Nanotechnology - Fundamentals and Applications (Martin Wolf)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.03.2019)
      Ort: Mo 1.1.26 Seminarraum E1 (Arnimallee 14), Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.1.26 Seminarraum E1 (Arnimallee 14), Do 1.1.26 Seminarraum E1 (Arnimallee 14), Fr 1.1.26 Seminarraum E1 (Arnimallee 14)
    • 20113911 Seminar
      A Second Generation of Quantum Technology (Torsten Siebert)
      Zeit: Mo 16:00-18:00 (Erster Termin: 15.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      The insight that quantum mechanics offers into the nature of matter at the microscopic level has inspired a wide range of technologies reaching into virtually every aspect of modern industrial society. Transistors, lasers, magnetic resonance tomography and atomic clocks are prominent examples of first generation quantum technologies operating with effects from large ensembles of quantum particles. A series of exceptional achievements in theory and experiments indicate that this first “quantum revolution” will not be the last [1-3]. A seemingly trivial switch to addressing the state of individual quantum particles or quasi-particles as well as their correlations and entanglement opens a regime of effects for new technological innovations rooted in the Einstein-Podolsky-Rosen-Paradoxon [4,5]. How does this fundamental concept in quantum physics translate to new technologies? Can "spooky action at a distance" guarantee the security of digital information and communication in the future? Is "ghost imaging" a technique that will address seemingly unsolvable problems in modern optics? What lies behind the terminology "quantum supremacy" in the comparison of classical und quantum computing and where is the quantum approach truly advantageous? The seminar will address these and other questions along with the fundamentals behind modern "second generation" quantum technologies.

      Literaturhinweise

      [1] Nobel Prize in Physics 2012: Serge Haroche and David J. Wineland: "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

      [2] Wolf Prize in Physics 2010: Alain Aspect, John Clauser and Anton Zeilinger: "For their fundamental conceptual and experimental contributions to the foundations of quantum physics, specifically an increasingly sophisticated series of tests of Bell's inequalities or extensions thereof using entangled quantum states”     

      [3] Richard P. Feynman, "Simulating Physics with Computers" Int. J. Theor. Phys. 21 (1982) 467.

      [4] Albert Einstein, Boris Y. Podolsky and Nathan Rosen, "Can a quantum-mechanical description of physical reality be considered complete?" Phys. Rev. Lett. 47 (1935) 777.  

      [5] John. S. Bell, "On the Einstein-Podolsky-Rosen Paradoxon" Physics 1 (1964) 195.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Recommended after attending the lecture "Methods of Molecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Selected Topics in Physics_1

    0352bA1.6
    • 20010511 Seminar
      Advanced Statistical Physics of Biological and Soft-Matter Systems (Roland Netz)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Hinweise für Studierende

      Participation of M.Sc. students with a background in statistical physics is encouraged.

      Kommentar

      Seminar presentations of recent articles on various topics related to the statistical mechanics description of biological and soft-matter systems. All participants are expected to have read the articles before the meeting.

    • 20112011 Seminar
      Computer Tutorial in Markov Modeling (Frank Noe)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: T9/SR 006 Seminarraum (Takustr. 9)

      Zusätzl. Angaben / Voraussetzungen

      For more up to date information see seminar homepage

      Kommentar

      In this 1-week compact course (Blockseminar) participants will learn to construct Markov models for molecular dynamics simulation data and how to analyze them quantitatively. The course will take place in a computer lab and will include both theory lessons (20-30%) as well as practical applications using the software package PyEMMA (Emma's Markov Model Algorithms). All computer applications will be done in IPython. We will provide test data, but participants may also bring their own MD data (any standard format, i.e.xtc, dcd) and we will help with applying EMMA to them.

    • 20112811 Seminar Abgesagt
      Artificial Photosynthesis - Science for the Energy Transition (Holger Dau)
      Zeit: Di 16:00-18:00 (Erster Termin: 16.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20113811 Seminar
      Nanotechnology - Fundamentals and Applications (Martin Wolf)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.03.2019)
      Ort: Mo 1.1.26 Seminarraum E1 (Arnimallee 14), Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.1.26 Seminarraum E1 (Arnimallee 14), Do 1.1.26 Seminarraum E1 (Arnimallee 14), Fr 1.1.26 Seminarraum E1 (Arnimallee 14)
    • 20113911 Seminar
      A Second Generation of Quantum Technology (Torsten Siebert)
      Zeit: Mo 16:00-18:00 (Erster Termin: 15.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      The insight that quantum mechanics offers into the nature of matter at the microscopic level has inspired a wide range of technologies reaching into virtually every aspect of modern industrial society. Transistors, lasers, magnetic resonance tomography and atomic clocks are prominent examples of first generation quantum technologies operating with effects from large ensembles of quantum particles. A series of exceptional achievements in theory and experiments indicate that this first “quantum revolution” will not be the last [1-3]. A seemingly trivial switch to addressing the state of individual quantum particles or quasi-particles as well as their correlations and entanglement opens a regime of effects for new technological innovations rooted in the Einstein-Podolsky-Rosen-Paradoxon [4,5]. How does this fundamental concept in quantum physics translate to new technologies? Can "spooky action at a distance" guarantee the security of digital information and communication in the future? Is "ghost imaging" a technique that will address seemingly unsolvable problems in modern optics? What lies behind the terminology "quantum supremacy" in the comparison of classical und quantum computing and where is the quantum approach truly advantageous? The seminar will address these and other questions along with the fundamentals behind modern "second generation" quantum technologies.

      Literaturhinweise

      [1] Nobel Prize in Physics 2012: Serge Haroche and David J. Wineland: "For ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

      [2] Wolf Prize in Physics 2010: Alain Aspect, John Clauser and Anton Zeilinger: "For their fundamental conceptual and experimental contributions to the foundations of quantum physics, specifically an increasingly sophisticated series of tests of Bell's inequalities or extensions thereof using entangled quantum states”     

      [3] Richard P. Feynman, "Simulating Physics with Computers" Int. J. Theor. Phys. 21 (1982) 467.

      [4] Albert Einstein, Boris Y. Podolsky and Nathan Rosen, "Can a quantum-mechanical description of physical reality be considered complete?" Phys. Rev. Lett. 47 (1935) 777.  

      [5] John. S. Bell, "On the Einstein-Podolsky-Rosen Paradoxon" Physics 1 (1964) 195.

    • 20115111 Seminar
      Advanced Biomolecular Simulations (Petra Imhof)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.3.21 Seminarraum T1 (Arnimallee 14), Di 1.3.21 Seminarraum T1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Do 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Recommended after attending the lecture "Methods of Molecular Simulations"

      Kommentar

      This course teaches advanced methods of biomolecular simulations by hands-on applications. Combined with an introduction to the theory, we will perform practical computer simulations of representative biophysical examples such as conformational transitions or proton transfer reactions in proteins. We will employ different enhanced sampling techniques, such as - umbrella sampling - replica exchange - metadynamics

  • Advanced Quantum Mechanics

    0352bA2.1
    • 20104301 Vorlesung
      Advanced Quantum Mechanics (Jens Eisert)
      Zeit: Mi 12:00-14:00, Fr 10:00-12:00 (Erster Termin: 17.10.2018)
      Ort: Mi 1.3.14 Hörsaal A (Arnimallee 14), Fr 1.3.14 Hörsaal A (Arnimallee 14)

      Hinweise für Studierende

      Zielgruppe:
      Studenten, die Quantentheorie I gehört haben.

      Kommentar

      Scattering theory, quantum theory of radiation, systems of identical particles, relativistic quantum mechanics

      Literaturhinweise

      • J. J. Sakurai, "Modern Quantum Mechanics" (Addison-Wesley, 1993);
      • J. J. Sakurai, "Advanced Quantum Mechanics" (Addison-Wesley, 1967);
      • K. Gottfried and T.-M. Yan, "Quantum Mechanics: Fundamentals" (Springer, 2003); A. Messiah, "Quantum Mechanics" (Dover, 1999).

    • 20104302 Übung
      Advanced Quantum Mechanics (Jens Eisert)
      Zeit: Di 16:00-18:00, Mi 14:00-16:00, Fr 08:00-10:00 (Erster Termin: 23.10.2018)
      Ort: Di 1.1.26 Seminarraum E1 (Arnimallee 14), Mi 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Advanced Statistical Physics

    0352bA2.3
    • 20114301 Vorlesung
      Advanced Statistical Physics II (Roland Netz)
      Zeit: Mo 10:00-12:00, Mi 10:00-12:00 (Erster Termin: 15.10.2018)
      Ort: Mo 1.3.14 Hörsaal A (Arnimallee 14), Mi 1.3.14 Hörsaal A (Arnimallee 14)

      Kommentar

      Inhalt Non-equilibrium thermodyanmics (Entropy production, Onsager relations), causality and fluctuations, stochastic processes (Markov processes, Master equation, Langevin and Fokker-Planck equation), kinetic theory, phase transitions (Landau theory, Gaussian fluctuations, correlation functions, renormalization theory), theory of liquids, hydrodynamic and elasticity theory Zielgruppe: students who have attended the course Advanced Statistical Mechanics I Literature: Non-equilibrium thermodynamics, de Groot and Mazur The Fokker-Planck Equation, Risken Stochastic processes in physics and chemistry, N. G. van Kampen

    • 20114302 Übung
      Advanced Statistical Physics II (Roland Netz)
      Zeit: Di 12:00-14:00, Fr 14:00-16:00 (Erster Termin: 23.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Advanced Solid State Physics

    0352bA2.5
    • 20104601 Vorlesung
      Advanced Solid State Physics (Kirill Bolotin)
      Zeit: Di 12:00-14:00, Fr 12:00-14:00 (Erster Termin: 16.10.2018)
      Ort: Di 0.1.01 Hörsaal B (Arnimallee 14), Fr 0.1.01 Hörsaal B (Arnimallee 14)

      Hinweise für Studierende

      Target group: Master students during the coursework phase.

      Requirements: Solid state physics and quantum mechanics are helpful.

      Kommentar

      The lecture aims to establish a link between the fundamentals of solid state physics and specialized lectures on actual research topics. The following topics will be covered:

       

      • Structure of solids, thin films, and surfaces
      • Electronic states in 3-, 2-, and 1-dimensional solids, quantum stability
      • Magnetism, phase transitions, magnetoresistance, principles of spin electronics

      The course program will cover the basics of each topic but likewise discuss current methods and problems of solid state physics. The relevant experimental techniques (diffraction and imaging techniques, spectroscopic techniques, and magnetometry) will be introduced and discussed using examples from actual research.

      Literaturhinweise

      - Ashcroft/Mermin: Solid state physics;

      - Kittel: Introduction to solid state physics;

      - Lüth: Solid surfaces, interfaces and thin films;

      - Bland and Heinrich: Ultrathin magnetic structures

    • 20104602 Übung
      Advanced Solid State Physics (Kirill Bolotin)
      Zeit: Di 16:00-18:00, Mi 08:00-10:00 (Erster Termin: 23.10.2018)
      Ort: Di 1.3.48 Seminarraum T3 (Arnimallee 14), Mi 1.3.48 Seminarraum T3 (Arnimallee 14)
  • Special Topics in Magnetism

    0352bA3.11
    • 20108901 Vorlesung
      Magnetism in reduced dimensions and spin transport (Wolfgang Kuch)
      Zeit: Mi 10:00-12:00, zusätzliche Termine siehe LV-Details (Erster Termin: 17.10.2018)
      Ort: 0.1.01 Hörsaal B (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      http://www.physik.fu-berlin.de/einrichtungen/ag/ag-kuch/teaching

      Kommentar

      The field of magnetic nanostructures and spin transport has continuously spawned highly valued discoveries over the past years and is still  under a rapid and lively development. Fundamental research in this field is fueled by the vision of dissipationless information processing when using pure spin currents instead of elecronic charge currents like in conventional semiconductor electronics. Top-level publications from this field receive thus an enormous degree of attention.

      This lecture will lead from an introduction into the basics of spin and magnetism in reduced dimensions to some of the most fascinating recent examples of actual research. It will cover the following contents:

      • Quantum-mechanical description of spin
      • Magnetic anisotropy
      • Molecular magnetism
      • Spin currents and spin injection
      • Pure spin currents
      • Spin caloritronics
      • Magnetoresistance effects and spintronics
      • Antiferromagnetic spintronics
      • Magnetic domains and domain-wall motion
      • Topological spin structures
      • Magnetization dynamics
      • Spin waves

      The topics covered match well to the research focus of several of the experimental and theoretical work groups of the department.

      Literaturhinweise

      • Original publications in scientific journals (available online from within FU)
      • J. A. C. Bland and B. Heinrich (Eds.), Ultrathin Magnetic Structures I-IV (Springer) (available online from within FU)
      • S. Bandyopadhyay and M. Cahay, Introduction to Spintronics (CRC Press)
      • B. Hillebrands and K. Ounadjela (Eds.), Spin Dynamics in Confined Magnetic Structures I-III (Springer)
      • J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press)
      • H. Zabel and M. Farle (eds.), Magnetic Nanostructures (Springer)

    • 20108902 Übung
      Magnetism in reduced dimensions and spin transport (Wolfgang Kuch)
      Zeit: Mi 14:00-16:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Special Topics in Molecular Physics

    0352bA3.12
    • 20120701 Vorlesung
      Special Topics in Molecular Physics (Karsten Heyne)
      Zeit: Fr 12:00-14:00 (Erster Termin: 19.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      This lecture focusses on spectroscopic methods used to investigate molecular systems (mainly) in condensed phase. Light-matter interaction will be discussed to understand linear and non-linear spectroscopic methods. Frequency conversion methods will be introduced and pump-probe and 2D spectroscopic methods will be discussed as examples.

    • 20120702 Übung
      Special Topics in Molecular Physics (Karsten Heyne)
      Zeit: Fr 14:00-15:00 (Erster Termin: 26.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)
  • Special Topics in Molecular Biophysics

    0352bA3.13
    • 20104901 Vorlesung
      Production of biological samples in biophysics (Ramona Schlesinger)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.03.2019)
      Ort: Mo - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Di - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Mi - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Do - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14), Fr - 1.1.18 Gruppen-/Seminarraum (Arnimallee 14)

      Hinweise für Studierende

      Master students, diploma strudents and PhD students with interest in generating their biological samples by themselves for biophysical investigations

      Zusätzl. Angaben / Voraussetzungen

      max. 6 Plätze; Nachrückerliste: r.schlesinger@fu-berlin.de

      Kommentar

      Lectures about how to mutagenise a protein, cloning techniques, expression and purification of proteins will be given prior to the practical exercises in the lab.

    • 20104902 Übung
      Production of biological samples in biophysics (Ramona Schlesinger)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.03.2019)
      Ort: keine Angabe

      Kommentar

      Practical exercises : -molecular biological techniques e.g. transformation of bacteria with plasmids in preparation of expressing a membrane protein -cultivation of bacteria to express the protein -purification of membrane proteins by affinity chromatography -analysis of DNA and protein preparations by agarose- and SDS-gelelectrophoresis

  • Advanced Astronomy and Astrophysics

    0352bA3.14
    • 20103230 Praktikum
      Astrophysical practical course (Antonio Garcia-Munoz)
      Zeit: Mo 12:00-16:00 (Erster Termin: 15.10.2018)
      Ort: Praktikumsräume noch nicht bekannt

      Zusätzl. Angaben / Voraussetzungen

      ANMERKUNGEN:

      Empowering to participate is limited and is done in sequence of registration. Please send for registration an e-mail to praktikum@astro.physik.tu-berlin.de specifying name and time of the practical course (FU, Mo 12-16)

      ZIELG RUPPE:

      Postgraduate practical course on astronomy and astrophysics, practical part of the module „Advanced Astronomy and Astrophysics“ (Physics / Master)

      One can choose – if possible – between the PR Astrophysical practical course and PR Computational astrophysics practical course. Open also for all students with interest in astronomy and astrophysics. (Note: empowering to participate is limited!)

      Constitutes a module for the Master course only together with two accompanying lectures.

      VORAUSSETZUNG:

      Knowledge of the Physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Method: teamwork (small groups) on different astronomical topics. Subject: Classification of stars, RV method, rotation of the Sun, stellar spectroscopy with CCD camera, observation with telescopes, astronomical systems of coordinates, galactic rotation curve, properties of eclipsing binaries, light curves of dwarf novae.

    • 20108530 Praktikum
      Computational astrophysical practical course (Numerikum) (Jenny Feige, Antonio Garcia-Munoz)
      Zeit: Mo 16:00-20:00 (Erster Termin: 15.10.2018)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, Raum EW 176/177

      Zusätzl. Angaben / Voraussetzungen

      ANMERKUNGEN:

      Empowering to participate is limited and is done in sequence of registration! Please send for registration an e-mail to numerikum@astro.physik.tu-berlin.de specifying the name and the time of the practical course (FU-Numerikum, Mo 16-20).

      ZIELG RUPPE

      Postgraduate practical course on astronomy and astrophysics. Practical part of the  module „Advanced Astronomy and Astrophysics“ (Physics / Master). One can choose – if possible – between the PR Astrophysical practical course and PR Computational astrophysics practical course. Open also for all students with interest in astronomy and astrophysics. (Note: empowering to participate is limited!)

      Constitutes a module for the Master course only together with two accompanying lectures.

      VORAUSSETZUNG:

      Programming knowledge is required to participate in this course. Knowledge of the Physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Numerical methods for solving astrophysical problems in hydrodynamics, stellar dynamics, cosmic rays or dust physics related to current research at the Zentrum für Astronomie und Astrophysik. Studenst will write small programs as well as work with existing programs (written in Fortran90).

    • 20110501 Vorlesung
      Stellar Winds (Beate Patzer)
      Zeit: Di 12:00-14:00 (Erster Termin: 16.10.2018)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Wigner-Gebäude Raum EW 226

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE:

      Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master). Open for all students with interest in astronomys and astrophysics.

      VORAUSSETZUNG

      Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Stellar mass loss (thermical velocities, mass loss rates), wind mechanisms, wind equation, pressure driven winds (sun, Parker solutions), radiation driven winds:

      a) hot stars, role of spectral lines,

      b) cool stars, dust driven stellar winds, numerical modelling, circumstellar envelopes of late-type stars, masers.

    • 20110601 Vorlesung
      Molecular Astrohysics of Stars and Galaxies (Beate Patzer)
      Zeit: Do 14:00-16:00 (Erster Termin: 18.10.2018)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Wigner-Gebäude, Raum EW 809/810

      Kommentar

      INHALT:

      Molecular properties of astrophysically relevant molecules, molecules in the early universe, chemistry at the birth of stars and galaxies, theory of circumstellar dust shells, supernova chemistry, dust and molecules near active galactic nuclei and cosmological implications.

      ZIELGRUPPE:

      Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master). Open for all studenst with interest in astronomy and astrophysics.

      VORAUSSETZUNG:

      Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

    • 20120501 Vorlesung
      Nuclear Astrophysics (Jenny Feige)
      Zeit: Mi 12:00-14:00 (Erster Termin: 17.10.2018)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, Raum EW 229

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE: Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics / Master).Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG: Basic knowledge in Physics and Mathematics. Knowledge of the physics / B.Sc. Module „Einführung in die Astronomie und Astrophysik“ advised.

      Kommentar

      Elemental abundances in the solar system, nuclear physics (nuclear models, nuclear reactions and reaction rates), nucleosynthesis (Big Bang, stars, cosmic rays), experimental methods in nuclear astrophysics and their applications.

    • 20120801 Vorlesung
      Physics of the planetary interior (Nicola Tosi)
      Zeit: Mi 10:00-12:00 (Erster Termin: 17.10.2018)
      Ort: TU Berlin, Hardenbergstr. 36, Eugen-Paul-Wigner-Gebäude, Raum EW 229

      Zusätzl. Angaben / Voraussetzungen

      ZIELGRUPPE: Eligible lecture of the module „Advanced Astronomy and Astrophysics“ (Physics/Master). Open also for all students with interest in astronomy and astrophysics.

      VORAUSSETZUNG: Kenntnisse in Physik und Mathemaik. Bachelor-Abschluss erwünscht.

      Kommentar

      Gravity and interior structure of planets and satellites; elasticity and deformation of planetary lithospheres; heat generation and transfer in planetary interiors; convection and thermal evolution of terrestrial bodies.

  • Modern Methods in Theoretical Physics A_1

    0352bA3.15
    • 20113201 Vorlesung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20113202 Übung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 09:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20114001 Vorlesung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Kommentar

      Future quantum technologies require a deep understanding of how to control, manipulate and read-out a quantum system. Crucially, obtaining knowledge about a quantum system calls for methods going beyond classical measurement schemes. In addition, extracting information of a quantum system via a measurement requires the system to be opened up
      to the measurement apparatus, hence a prerequisite for quantum measurement theory is the knowledge of open quantum system theory, i.e., the description as well as implications of the coupling of the quantum system to it's environment.
      In principle, already the coupling to an environment can be understood as a continuous measurement performed on the quantum system -- whereby here all information is lost into the environment.

      This class gives an introduction into open quantum systems and quantum measurement theory. The course is accompanied by current examples from quantum information protocols in superconducting circuit architectures and mechanical systems in the quantum regime.

    • 20114002 Übung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Modern Methods in Theoretical Physics A_2

    0352bA3.16
    • 20113201 Vorlesung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20113202 Übung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 09:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20114001 Vorlesung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Kommentar

      Future quantum technologies require a deep understanding of how to control, manipulate and read-out a quantum system. Crucially, obtaining knowledge about a quantum system calls for methods going beyond classical measurement schemes. In addition, extracting information of a quantum system via a measurement requires the system to be opened up
      to the measurement apparatus, hence a prerequisite for quantum measurement theory is the knowledge of open quantum system theory, i.e., the description as well as implications of the coupling of the quantum system to it's environment.
      In principle, already the coupling to an environment can be understood as a continuous measurement performed on the quantum system -- whereby here all information is lost into the environment.

      This class gives an introduction into open quantum systems and quantum measurement theory. The course is accompanied by current examples from quantum information protocols in superconducting circuit architectures and mechanical systems in the quantum regime.

    • 20114002 Übung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Modern Methods in Theoretical Physics A_3

    0352bA3.17
    • 20113201 Vorlesung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20113202 Übung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 09:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20114001 Vorlesung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Kommentar

      Future quantum technologies require a deep understanding of how to control, manipulate and read-out a quantum system. Crucially, obtaining knowledge about a quantum system calls for methods going beyond classical measurement schemes. In addition, extracting information of a quantum system via a measurement requires the system to be opened up
      to the measurement apparatus, hence a prerequisite for quantum measurement theory is the knowledge of open quantum system theory, i.e., the description as well as implications of the coupling of the quantum system to it's environment.
      In principle, already the coupling to an environment can be understood as a continuous measurement performed on the quantum system -- whereby here all information is lost into the environment.

      This class gives an introduction into open quantum systems and quantum measurement theory. The course is accompanied by current examples from quantum information protocols in superconducting circuit architectures and mechanical systems in the quantum regime.

    • 20114002 Übung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Modern Methods in Theoretical Physics A_4

    0352bA3.18
    • 20113201 Vorlesung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20113202 Übung
      Quantum and Statistical Mechanics Computations of Molecular Structure (Ana-Nicoleta Bondar)
      Zeit: Fr 09:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.4.31 Seminarraum E3 (Arnimallee 14)
    • 20114001 Vorlesung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 14:00-16:00 (Erster Termin: 16.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Kommentar

      Future quantum technologies require a deep understanding of how to control, manipulate and read-out a quantum system. Crucially, obtaining knowledge about a quantum system calls for methods going beyond classical measurement schemes. In addition, extracting information of a quantum system via a measurement requires the system to be opened up
      to the measurement apparatus, hence a prerequisite for quantum measurement theory is the knowledge of open quantum system theory, i.e., the description as well as implications of the coupling of the quantum system to it's environment.
      In principle, already the coupling to an environment can be understood as a continuous measurement performed on the quantum system -- whereby here all information is lost into the environment.

      This class gives an introduction into open quantum systems and quantum measurement theory. The course is accompanied by current examples from quantum information protocols in superconducting circuit architectures and mechanical systems in the quantum regime.

    • 20114002 Übung
      Open quantum systems and measurement theory (Anja Metelmann)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)
  • Modern Methods in Theoretical Physics B_1

    0352bA3.19
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This module teaches the theoretical basics for simulation of simple stochastic systems (e.g. molecular models, ising models, diffusion in model potentials). Physical principles for stochastic trajectories and ensembles are combined with a discussion of simulation techniques that are able to generate appropriate data. In more detail, we will cover: Statistical mechanics: basis and derivations to the most important physical ensembles. Boltzmann distribution, Partition function, Expectations Monte-Carlo simulation: Theory, construction, and convergence of Monte Carlo methods for the computation of stationary expectation values Molecular dynamics simulation: Theory, construction, and convergence of MD simulations for the computation of dynamical expectation values Kinetics: Rate theories, time correlations and other time-dependent expectations

    • 20115702 Übung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
  • Modern Methods in Theoretical Physics B_2

    0352bA3.20
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This module teaches the theoretical basics for simulation of simple stochastic systems (e.g. molecular models, ising models, diffusion in model potentials). Physical principles for stochastic trajectories and ensembles are combined with a discussion of simulation techniques that are able to generate appropriate data. In more detail, we will cover: Statistical mechanics: basis and derivations to the most important physical ensembles. Boltzmann distribution, Partition function, Expectations Monte-Carlo simulation: Theory, construction, and convergence of Monte Carlo methods for the computation of stationary expectation values Molecular dynamics simulation: Theory, construction, and convergence of MD simulations for the computation of dynamical expectation values Kinetics: Rate theories, time correlations and other time-dependent expectations

    • 20115702 Übung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
  • Modern Methods in Theoretical Physics B_3

    0352bA3.21
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This module teaches the theoretical basics for simulation of simple stochastic systems (e.g. molecular models, ising models, diffusion in model potentials). Physical principles for stochastic trajectories and ensembles are combined with a discussion of simulation techniques that are able to generate appropriate data. In more detail, we will cover: Statistical mechanics: basis and derivations to the most important physical ensembles. Boltzmann distribution, Partition function, Expectations Monte-Carlo simulation: Theory, construction, and convergence of Monte Carlo methods for the computation of stationary expectation values Molecular dynamics simulation: Theory, construction, and convergence of MD simulations for the computation of dynamical expectation values Kinetics: Rate theories, time correlations and other time-dependent expectations

    • 20115702 Übung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
  • Modern Methods in Theoretical Physics B_4

    0352bA3.22
    • 20115701 Vorlesung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Mo 12:00-14:00 (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      This module teaches the theoretical basics for simulation of simple stochastic systems (e.g. molecular models, ising models, diffusion in model potentials). Physical principles for stochastic trajectories and ensembles are combined with a discussion of simulation techniques that are able to generate appropriate data. In more detail, we will cover: Statistical mechanics: basis and derivations to the most important physical ensembles. Boltzmann distribution, Partition function, Expectations Monte-Carlo simulation: Theory, construction, and convergence of Monte Carlo methods for the computation of stationary expectation values Molecular dynamics simulation: Theory, construction, and convergence of MD simulations for the computation of dynamical expectation values Kinetics: Rate theories, time correlations and other time-dependent expectations

    • 20115702 Übung
      Computational Molecular Physics (Petra Imhof, Felix Höfling)
      Zeit: Di 16:00-18:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
  • Modern Methods in Experimental Physics A_1

    0352bA3.26
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 17.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20109101 Vorlesung
      Preparatory Course to the Advanced Master Laboratory (Martin Weinelt, Cornelius Gahl)
      Zeit: Do 10:00-12:00 (Erster Termin: 18.10.2018)
      Ort: FP-R FP-Räume (Arnimallee 14)

      Kommentar

      This course is intended for Mater Students who have not passed extended introductory courses to laboratory experiments during their Bachelor studies. In this case we strongly recommend the course before entering the Advanced Mater Laboratory. Please note that at FU the Physics Bachelor comprises two basic and one intermediate laboratory course (11 + 8 ECTS).

      Depending on your experience you can choose between:

      1. 2 courses in the Basic Lab (Electric Signals and Optics) and 3 courses in the Intermediate Lab (...)
      2. 4 courses in the Intermediate Lab (...)

    • 20109102 Übung
      Preparatory Course to the Advanced Master Laboratory (Martin Weinelt, Cornelius Gahl)
      Zeit: Do 12:00-20:00 (Erster Termin: 18.10.2018)
      Ort: FP-R FP-Räume (Arnimallee 14)
    • 20112301 Vorlesung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.02.2019)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Organizational meeting: Monday, 11.02.2019, 14-15 , Room 1.4.03 (T2)

      Lecture: 25.02.-08.03.2019 9:30 - 12:30 daily
      Practice/experimental part: afternoon sessions: 12:30 - 16:30 daily

      Location:
      FMP small seminar room (B1.14), ground floor
      Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

      Kommentar

      The following topics will be part of the curriculum:
      Macrosopic magnetization, spectrometer hardware, Fourier-transformed spectroscopy, quantum mechanics of spin systems, relaxation effects, chemical exchange phenomena of spin labels, spatial encoding of NMR signals, contrast generation in NMR imaging, spin hyperpolarization, spin exchange optical pumping.

      The afternoon lab course on selected dates will include discussion of some calculus exercises as well as acquiring NMR spectra and images on a 9.4 T magnet (students with pacemakers or metal implants as well as pregnant or nursing women cannot participate in this part). Further information can be found here: http://schroeder.fmp-berlin.info/Teaching.html

    • 20112302 Übung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: keine Angabe

      Zusätzl. Angaben / Voraussetzungen

      Lecture: February 22 - March 4, 9:30 - 12:30 daily Practice/experimental part: afternoon sessions 12:30 - 16:30 daily Location FMP small seminar room (B1.14), ground floor Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 18, 2019 - February 22, 2019

      Location: SR E2 (1.1.53).

      Please Email Registration until January,10, 2019, to jens.balke@fu-berlin.de

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_2

    0352bA3.27
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 17.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20112301 Vorlesung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.02.2019)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Organizational meeting: Monday, 11.02.2019, 14-15 , Room 1.4.03 (T2)

      Lecture: 25.02.-08.03.2019 9:30 - 12:30 daily
      Practice/experimental part: afternoon sessions: 12:30 - 16:30 daily

      Location:
      FMP small seminar room (B1.14), ground floor
      Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

      Kommentar

      The following topics will be part of the curriculum:
      Macrosopic magnetization, spectrometer hardware, Fourier-transformed spectroscopy, quantum mechanics of spin systems, relaxation effects, chemical exchange phenomena of spin labels, spatial encoding of NMR signals, contrast generation in NMR imaging, spin hyperpolarization, spin exchange optical pumping.

      The afternoon lab course on selected dates will include discussion of some calculus exercises as well as acquiring NMR spectra and images on a 9.4 T magnet (students with pacemakers or metal implants as well as pregnant or nursing women cannot participate in this part). Further information can be found here: http://schroeder.fmp-berlin.info/Teaching.html

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 18, 2019 - February 22, 2019

      Location: SR E2 (1.1.53).

      Please Email Registration until January,10, 2019, to jens.balke@fu-berlin.de

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20112302 Übung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: keine Angabe

      Zusätzl. Angaben / Voraussetzungen

      Lecture: February 22 - March 4, 9:30 - 12:30 daily Practice/experimental part: afternoon sessions 12:30 - 16:30 daily Location FMP small seminar room (B1.14), ground floor Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_3

    0352bA3.28
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 17.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20112301 Vorlesung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.02.2019)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Organizational meeting: Monday, 11.02.2019, 14-15 , Room 1.4.03 (T2)

      Lecture: 25.02.-08.03.2019 9:30 - 12:30 daily
      Practice/experimental part: afternoon sessions: 12:30 - 16:30 daily

      Location:
      FMP small seminar room (B1.14), ground floor
      Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

      Kommentar

      The following topics will be part of the curriculum:
      Macrosopic magnetization, spectrometer hardware, Fourier-transformed spectroscopy, quantum mechanics of spin systems, relaxation effects, chemical exchange phenomena of spin labels, spatial encoding of NMR signals, contrast generation in NMR imaging, spin hyperpolarization, spin exchange optical pumping.

      The afternoon lab course on selected dates will include discussion of some calculus exercises as well as acquiring NMR spectra and images on a 9.4 T magnet (students with pacemakers or metal implants as well as pregnant or nursing women cannot participate in this part). Further information can be found here: http://schroeder.fmp-berlin.info/Teaching.html

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 18, 2019 - February 22, 2019

      Location: SR E2 (1.1.53).

      Please Email Registration until January,10, 2019, to jens.balke@fu-berlin.de

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20112302 Übung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: keine Angabe

      Zusätzl. Angaben / Voraussetzungen

      Lecture: February 22 - March 4, 9:30 - 12:30 daily Practice/experimental part: afternoon sessions 12:30 - 16:30 daily Location FMP small seminar room (B1.14), ground floor Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Modern Methods in Experimental Physics A_4

    0352bA3.29
    • 20103501 Vorlesung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 10:00-12:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      Powerful new investigations of attosecond electronic and femtosecond structural dynamics have become possible within the last decade, as a result of the development of a number of novel experimental and theoretical tools and methodologies Within this lecture series an overview will be presented of these new tools and methodologies, and relevant research highlights will be discussed

    • 20105701 Vorlesung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 12:00-14:00 (Erster Termin: 17.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Life on earth essentially depends on the functioning of biological macromolecules such as proteins. At least 50 % of all known enzymes contain metal atoms as key constituents of their active sites, which are crucially for the reactivity. These metal centers often are chemically complex and involved in electron and proton transfer processes, substrate turnover, and regulation. A particular important aspect in biophysics research is the activation of small molecules at protein-bound metal centers with outstanding relevance in chemistry, medicine, industry, and energy applications. The field is still under rapid development. The lecture is addressed to advanced students with interests in biophysics. Covered topics include, e.g., coordination chemistry, assembly, molecular and electronic structure, photoreactions, redox processes, catalysis, and dynamics of metal centers in, for example, hydrogenase, photosystem, oxidase proteins. Selected experimental and theoretical approaches to understand the mechanisms, with emphasis on X-ray based techniques such as spectroscopy and crystallography, are introduced. Recent scientific highlights in molecular biophysics are discussed. The aim is to provide an introduction into important questions, practical approaches, and outcomes of biophysical research on metalloenzymes.

    • 20112301 Vorlesung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 11.02.2019)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Organizational meeting: Monday, 11.02.2019, 14-15 , Room 1.4.03 (T2)

      Lecture: 25.02.-08.03.2019 9:30 - 12:30 daily
      Practice/experimental part: afternoon sessions: 12:30 - 16:30 daily

      Location:
      FMP small seminar room (B1.14), ground floor
      Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

      Kommentar

      The following topics will be part of the curriculum:
      Macrosopic magnetization, spectrometer hardware, Fourier-transformed spectroscopy, quantum mechanics of spin systems, relaxation effects, chemical exchange phenomena of spin labels, spatial encoding of NMR signals, contrast generation in NMR imaging, spin hyperpolarization, spin exchange optical pumping.

      The afternoon lab course on selected dates will include discussion of some calculus exercises as well as acquiring NMR spectra and images on a 9.4 T magnet (students with pacemakers or metal implants as well as pregnant or nursing women cannot participate in this part). Further information can be found here: http://schroeder.fmp-berlin.info/Teaching.html

    • 20114801 Vorlesung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Block course ( Date: February 18, 2019 - February 22, 2019

      Location: SR E2 (1.1.53).

      Please Email Registration until January,10, 2019, to jens.balke@fu-berlin.de

      Kommentar

      Structure of biomembranes ansd biopolymers, physical basis of their organisation, transport across and along membranes, biomolecular interactions, electrostatics at the membrane/water interface, membrane proteins and membrane protein -lipid interaction, physical methods to study membranes and biomolecular interactions

      Tutorial and training content: membrane protein -lipid interaction, determination of surface potential, lipid diffusion, domain formation, techniques: steady-state and time resolved absorption and fluorescence techniques/microscopy

    • 20103502 Übung
      Ultrafast Laserphysics (Marcus Vrakking)
      Zeit: Fr 08:00-10:00 (Erster Termin: 26.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)
    • 20105702 Übung
      Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes (Michael Haumann)
      Zeit: Mi 14:00-16:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Selected themes in the lecture "Special Topics in Molecular Biophysics: Biophysics of Metalloenzymes" (Vorlesung 205390, M. Haumann) are extended and insight into practical research work is given, mostly using computer-based methods. Topics and dates will be announced in the lecture.

    • 20112302 Übung
      NMR spectroscopy and imaging (Leif Schröder)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: keine Angabe

      Zusätzl. Angaben / Voraussetzungen

      Lecture: February 22 - March 4, 9:30 - 12:30 daily Practice/experimental part: afternoon sessions 12:30 - 16:30 daily Location FMP small seminar room (B1.14), ground floor Campus Buch, Robert-Rössle-Str. 10, 13125 Berlin

    • 20114802 Übung
      Special Topics in Molecular Biophysics: Biomembranes (Ulrike Alexiev)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: Mo 1.1.53 Seminarraum E2 (Arnimallee 14), Di 1.1.53 Seminarraum E2 (Arnimallee 14), Mi 1.1.53 Seminarraum E2 (Arnimallee 14), Do 1.1.53 Seminarraum E2 (Arnimallee 14), Fr 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Nanophysics

    0352bA3.3
    • 20105801 Vorlesung
      Nanophysics (Katharina Franke)
      Zeit: Mo 10:00-12:00 (Erster Termin: 15.10.2018)
      Ort: 1.1.16 FB-Raum (Arnimallee 14)

      Kommentar

      On the nanometer scale many materials exhibit size-dependent electronic, optical, and magnetic properties, which are governed by quantum mechanical effects. In this lecture, we will discuss experimental techniques to explore some of these exciting phenomena and explain the physical concepts.

    • 20105802 Übung
      Nanophysics (Katharina Franke)
      Zeit: Fr 10:00-12:00 (Erster Termin: 26.10.2018)
      Ort: 1.4.03 Seminarraum T2 (Arnimallee 14)

      Kommentar

      The exercises will comprise the discussion of recent literature related to the concepts explained in the lecture "Nanophysics".

  • Modern Methods in Experimental Physics B_1

    0352bA3.30
    • 20112701 Vorlesung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Fr 12:00-14:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Quantitative science is impossible without measuring and analyzing signals. Examples include time-dependent voltages in electric circuits, microscopy images of nanostructures, pressure variations in blood vessels as well as electromagnetic and acoustic waves in matter. This lecture course will provide an introduction into the toolbox of signal analysis and its applications. Questions that will be addressed are for example: How can we measure a small signal that is buried in a large noise background? How does a lock-in amplifier work? How can we reconstruct a continuous signal that was sampled only at discrete times? What are aliasing and undersampling? How can we characterize as diverse systems as electrical filters, light detectors and optical lenses by a single formalism? Why is Fourier analysis such a powerful tool here? In the exercises, the course topics will be illustrated by practical examples, both analytical and numerical.

    • 20112702 Übung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Di 14:00-16:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • Modern Methods in Experimental Physics B_2

    0352bA3.31
    • 20112701 Vorlesung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Fr 12:00-14:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Quantitative science is impossible without measuring and analyzing signals. Examples include time-dependent voltages in electric circuits, microscopy images of nanostructures, pressure variations in blood vessels as well as electromagnetic and acoustic waves in matter. This lecture course will provide an introduction into the toolbox of signal analysis and its applications. Questions that will be addressed are for example: How can we measure a small signal that is buried in a large noise background? How does a lock-in amplifier work? How can we reconstruct a continuous signal that was sampled only at discrete times? What are aliasing and undersampling? How can we characterize as diverse systems as electrical filters, light detectors and optical lenses by a single formalism? Why is Fourier analysis such a powerful tool here? In the exercises, the course topics will be illustrated by practical examples, both analytical and numerical.

    • 20112702 Übung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Di 14:00-16:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • Modern Methods in Experimental Physics B_3

    0352bA3.32
    • 20112701 Vorlesung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Fr 12:00-14:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Quantitative science is impossible without measuring and analyzing signals. Examples include time-dependent voltages in electric circuits, microscopy images of nanostructures, pressure variations in blood vessels as well as electromagnetic and acoustic waves in matter. This lecture course will provide an introduction into the toolbox of signal analysis and its applications. Questions that will be addressed are for example: How can we measure a small signal that is buried in a large noise background? How does a lock-in amplifier work? How can we reconstruct a continuous signal that was sampled only at discrete times? What are aliasing and undersampling? How can we characterize as diverse systems as electrical filters, light detectors and optical lenses by a single formalism? Why is Fourier analysis such a powerful tool here? In the exercises, the course topics will be illustrated by practical examples, both analytical and numerical.

    • 20112702 Übung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Di 14:00-16:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • Modern Methods in Experimental Physics B_4

    0352bA3.33
    • 20112701 Vorlesung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Fr 12:00-14:00 (Erster Termin: 19.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Kommentar

      Quantitative science is impossible without measuring and analyzing signals. Examples include time-dependent voltages in electric circuits, microscopy images of nanostructures, pressure variations in blood vessels as well as electromagnetic and acoustic waves in matter. This lecture course will provide an introduction into the toolbox of signal analysis and its applications. Questions that will be addressed are for example: How can we measure a small signal that is buried in a large noise background? How does a lock-in amplifier work? How can we reconstruct a continuous signal that was sampled only at discrete times? What are aliasing and undersampling? How can we characterize as diverse systems as electrical filters, light detectors and optical lenses by a single formalism? Why is Fourier analysis such a powerful tool here? In the exercises, the course topics will be illustrated by practical examples, both analytical and numerical.

    • 20112702 Übung
      Signal analysis in physics: from Fourier transformation and sampling to the lock-in amplifier (Tobias Kampfrath)
      Zeit: Di 14:00-16:00 (Erster Termin: 23.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • Modern Methods in Experimental Physics C_1

    0352bA3.34
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 16.10.2018)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 23.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Modern Methods in Experimental Physics C_2

    0352bA3.35
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 16.10.2018)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 23.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Modern Methods in Experimental Physics C_3

    0352bA3.36
    • 20106101 Vorlesung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 10:00-12:00, Fr 10:00-12:00 (Erster Termin: 16.10.2018)
      Ort: Di 1.3.21 Seminarraum T1 (Arnimallee 14), Fr 1.3.21 Seminarraum T1 (Arnimallee 14)

      Zusätzl. Angaben / Voraussetzungen

      Vorlesung wird bei Bedarf auf Englisch gehalten. Voraussetzung sind ein fundiertes Verständnis der Festkörperphysik, vorteilhaft sind Grundlagen der Halbleiterphysik und Spektroskopie bzw F-Praktikum

      Kommentar

      Goal of the course is to

      • understand the fundamental limits of solar energy conversion.
      • know about the used materials and their electronic properties as well as the relevant technologies.
      • be able to identify relevant characterization techniques for the analysis of specific material and device properties.
      • understand the physical limits of the various characterization techniques.

       

      The course will be held in English and addresses master and PhD students in physics, chemistry, and physical chemistry. Successful participation in the course and passing the oral exam is rewarded with a total of 10 ECTS credit points.

       

      Main Topics of the Course

      A. Photovoltaics

      • Introduction to the basics of semiconductor physics
      • Introduction to the basic principles of photovoltaic (PV) energy conversion
      • Materials and concepts for PV including silicon, chalcopyrites, CdTe, OPV, DSSC, perovskites, novel concepts (3rd generation), …

      B. Analytics

      • Basics of spectroscopy (light sources, detectors, spectral analysis…)
      • Electrical characterization of PV devices (I-V, EQE, electroluminescence,...)
      • Optical characterization (UV-VIS, PL, IR, and Raman spectroscopy, Ellipsometry ...)
      • Electrical Material Characterization (Photoconductivity, Hall Effect, time-of-flight, capacitance spectroscopy…)
      • Structure and stoichiometry (NMR, XRD, XRF, RBS, AES, SEM, TEM, Neutron scattering…)
      • Surfaces and Interfaces (XPS, UPS, ARPES, STM, AFM…)
      • Defects (Electron Paramagnetic Resonance, Positron Annihilation, Muon Spin Rotation, LBIC, EBIC, Thermography…)

       

      For further information, please contact Prof. Dr. Klaus Lips:

      Tel.:  030 8062 14960 

      e-mail: lips@helmholtz-berlin.de 

      Literaturhinweise

      1. 1) Christiana Honsberg and Stuart Bowden http://www.pveducation.org/pvcdrom
      2. 2) Peter Würfel: "Physics of Solar Cells", Wiley-VCH 2005 bzw deutscher Titel: "Physik der Solarzellen"
      3. 3) Martin A. Green: "Solar cells : operating principles, technology and system applications", Kensington, N.S.W. : University of New South Wales, 1986
      4. 4) "Advanced Characteization Techniques for Thin Film Solar Cells" edited by D. Abou-Ras, T. Kirchartz, U. Rau, Wiley-VCH 2011
      5. 5) Hans Kuzmany: "Solid-State Spectroscopy" Springer Verlag 2009
      6. 6) Göpel/Ziegler: "Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie" Teubner 1994

    • 20106102 Übung
      Analytics for Photovoltaics (Klaus Lips)
      Zeit: Di 12:00-14:00 (Erster Termin: 23.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      Übungszettel und weitere Aufgaben zur Vorlesung "Analytik für die Photovoltaik" Themen: Energie, Lichtquellen, Solarzellen, Materialien, Halbleiter und Spektroskopie thematisch kohärent zur Vorlesung.

  • Photobiophysics and Photosynthesis

    0352bA3.6
    • 20103801 Vorlesung
      Molecular Bioenergetics in Oxygenic Photosynthesis (Holger Dau)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)

      Kommentar

      Oxygenic photosynthesis is the process that powers life on earth. It has shaped the atmosphere by CO2 consumption and O2 production. Today oxygenic photosynthesis also serves as a blueprint for the large-scale production of non-fossil fuels, using merely water and CO2 as raw materials. By closely interfaced lecture periods and lab experiments, the following topics are addressed:

      THE BASICS: Evolution and current types of photosynthetic organisms, basic mechanisms of the photosynthetic light reactions and dark reactions

      METHODS: Purification of functional photosynthetic membrane particles and protein complexes, biophysical standard methods in photosynthesis research, genetic modification of photosynthetic protein complexes as a tool in biophysical research.

      SPECIAL TOPICS: Bio-Hydrogen and Bio-Diesel production by photosynthetic organisms – an overview.

    • 20103802 Übung
      Molecular Bioenergetics in Oxygenic Photosynthesis (Holger Dau)
      Zeit: Termine siehe LV-Details (Erster Termin: 25.02.2019)
      Ort: 1.1.53 Seminarraum E2 (Arnimallee 14)
  • Semiconductor Physics

    0352bA3.7
    • 20106301 Vorlesung
      Semiconductor Physics (Jan Behrends)
      Zeit: Mo 10:00-12:00, zusätzliche Termine siehe LV-Details (Erster Termin: 15.10.2018)
      Ort: 1.3.21 Seminarraum T1 (Arnimallee 14)

      Kommentar

      This course provides a general overview about the electrical and optical properties of semiconductors and their application in devices such as diodes, solar cells and transistors. The following topics will be covered:
       

      • Elementary Properties of Semiconductors
      • Crystal Structure
      • Energy Bands
      • Semiconductor Statistics
      • Charge Transport
      • Excitations and Optical Properties
      • Contacts and Interfaces o Semiconductor Devices
      • Amorphous Inorganic Semiconductors
      • Organic Semiconductors

      Literaturhinweise

      • Karlheinz Seeger: "Semiconductor Physics" (9th Edition, Springer, 2004) o Peter Y. Yu, Manuel Cardona: "Fundamentals of Semiconductors" (4th Edition, Springer, 2010)
      • S.M. Sze: "Physics of Semiconductor Devices" (2nd Edition, Wiley, 1981)
      • A.J. Heeger, N.S. Sariciftci, E.B. Namdas: "Semiconducting and Metallic Polymers" (Oxford University Press, 2010)

    • 20106302 Übung
      Semiconductor Physics (Jan Behrends)
      Zeit: Mi 10:00-12:00 (Erster Termin: 24.10.2018)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
  • History of Physics

    0352bA3.9
    • 20114901 Vorlesung
      Gender and Science: An Introduction (Martina Erlemann)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)

      Hinweise für Studierende

      Anmeldung bei martina.erlemann@fu-berlin.de

      Kommentar

      What does gender have to do with natural sciences such as physics? When closely analysing the histories, cultures, practices and contents of the natural sciences, it becomes visible that gender and other social inequalities have an impact on the physical as well as on other natural sciences: from the underrepresentation of women in some sciences to gender differences in career outcomes up to gendered constructions in scientific theories, gender is relevant in various contexts of science. The course introduces to approaches, concepts and methods of Gender Studies for the natural sciences, putting a special focus on the physical sciences. The seminar is aimed at students of physics and other natural sciences. Interested students of the humanities and social sciences are also welcome.

    • 20114902 Übung
      Gender and Science: An Introduction (Martina Erlemann)
      Zeit: Termine siehe LV-Details (Erster Termin: 18.02.2019)
      Ort: 1.1.26 Seminarraum E1 (Arnimallee 14)
    • Selected Topics in Physics_1 0352bA1.2
    • Statistical Physics and Thermodynamics 0352bA2.2
    • Quantum Field Theory and Many Body Physics 0352bA2.4
    • Advanced Atomic and Molecular Physics 0352bA2.6
    • Advanced Biophysics 0352bA2.7
    • Theoretical Solid State Physics 0352bA3.1
    • Advanced Topics of Theoretical Condensed Matter Physics 0352bA3.10
    • Advanced Theoretical Biophysics 0352bA3.2
    • Modern Methods in Theoretical Physics C_1 0352bA3.23
    • Modern Methods in Theoretical Physics C_2 0352bA3.24
    • Modern Methods in Theoretical Physics C_3 0352bA3.25
    • Ultrafast Spectroscopy and Nonlinear Optics 0352bA3.4
    • Spectroscopy with Synchrotron Radiation 0352bA3.5
    • General Relativity 0352bA3.8
    • Scientific Specialization 0352bB1.1
    • Methodology and Project Planning 0352bB1.2
    • Seminar zur Masterarbeit 0352bE1.2