

Physik studieren

Innovationen vordenken

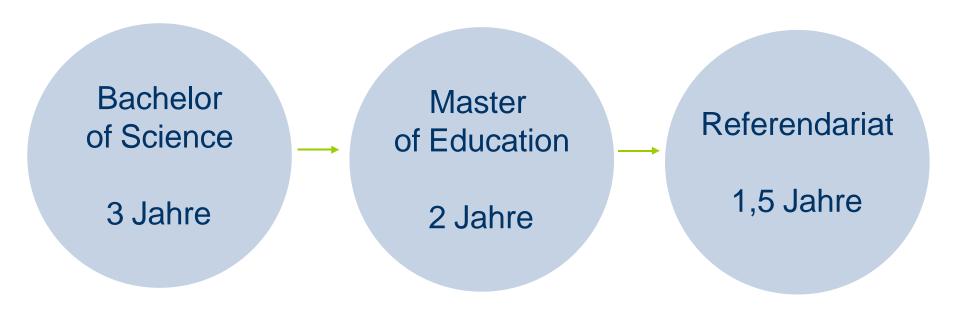
Bachelor of Science

Mono-Physik

Physik auf Lehramt

Mono-Bachelor der Physik

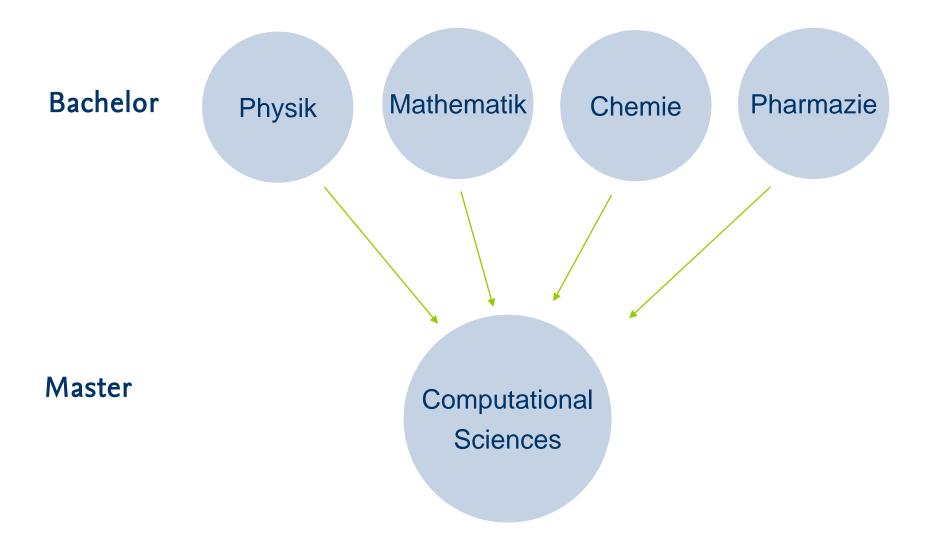
Bachelor of Science


- -3 Jahre
- breite Grundausbildung
- Laborpraktika
- Berufspraktikum

Master of Science

- 2 Jahre
- wissenschaftlicheSchwerpunktsetzung
- Mitwirkung in der Forschung

Lehramts-Bachelor der Physik



- Physik-Module speziell für das Lehramt
- Manche Lehrveranstaltungen zusammen mit Mono-Physiker*innen

Uni im Gespräch 2021 4

Viel Freiheit und Individualität

Studienstruktur – Mono-Bachelor

Pflicht

108 LP

Einführung in die Physik

Elektrodynamik und Optik

Grundlagen der Mess- und Labortechnik

d.h. Grundpraktikum I und Grundpraktikum II

Struktur der Materie

d. h. Festkörperphysik, Atom- und Molekülphysik

inkl. Fortgeschrittenenpraktikum

Analytische Mechanik

Quantenmechanik

Theoretische Elektrodynamik

Lineare Algebra

Analysis

Wahl

Weiterführende physikalische Module

Nichtphysikalische Module der Wahl

z. B. BWL, Informatik, Philosophie

ABV Allgemeine Berufsvorbereitung

Berufspraktikum

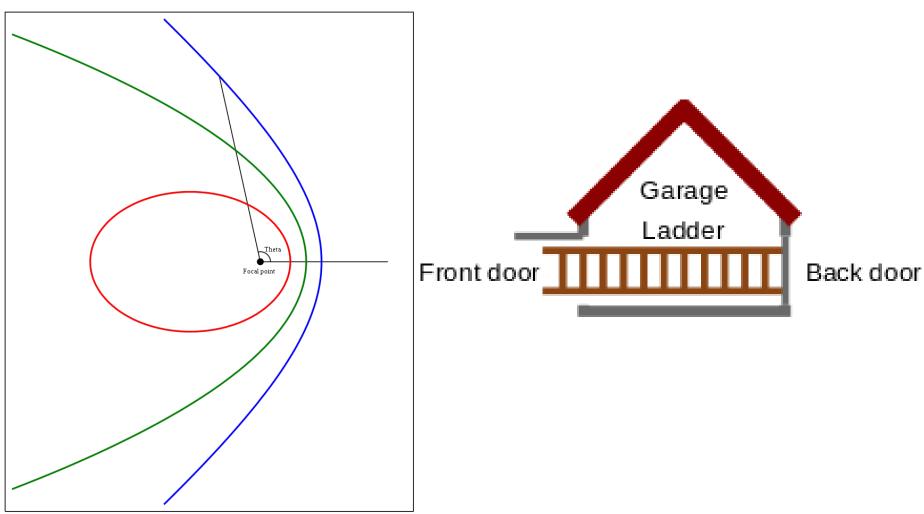
Projektpraktikum

Wissenschaftliche Präsentationstechniken (Seminar)

Wahlmodule aus acht Kompetenzbereichen

z. B. Medienkompetenz, Management, Sprachen

Bachelorarbeit



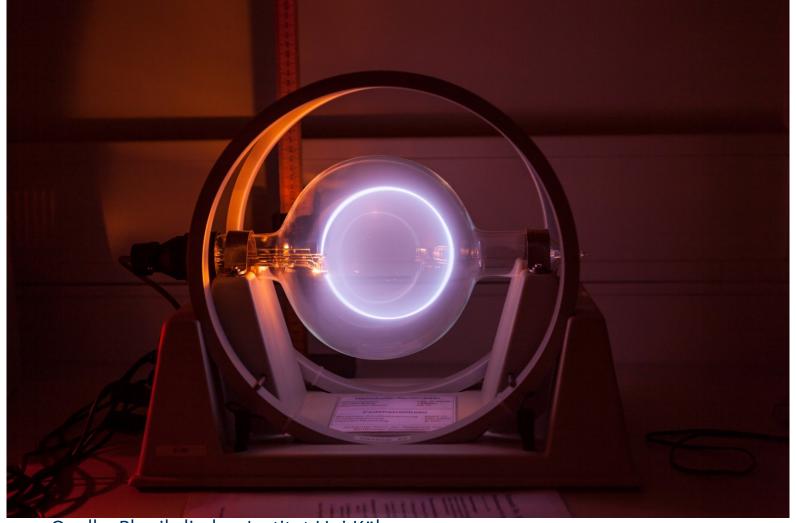
theoretisch oder experimentell

<u>Flyer</u>

Einführung in die Physik

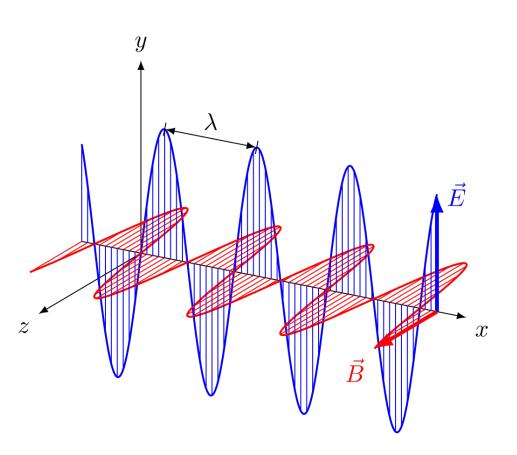
Quelle: Wikipedia, Kepler Orbit, Ladder paradox

Laborpraktika



Grundpraktikum 1: Spezifische Ladung des Elektrons

Quelle: Physikalisches Institut Uni Köln


Analytische Mechanik

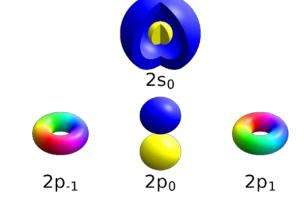
$$0 = \mu g \int_{x_1}^{x_2} \left[\frac{\partial}{\partial y} \sqrt{1 + (y')^2} (y - y_0) - \frac{\partial}{\partial x} \frac{\partial}{\partial y'} \sqrt{1 + (y')^2} (y - y_0) \right] \delta y \, dx$$

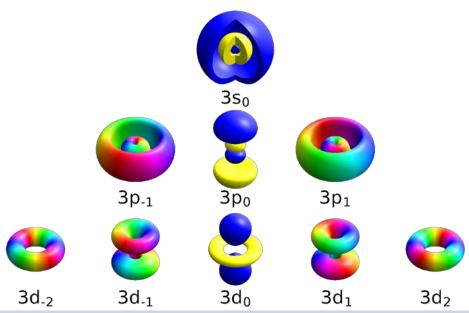
Elektrodynamik

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

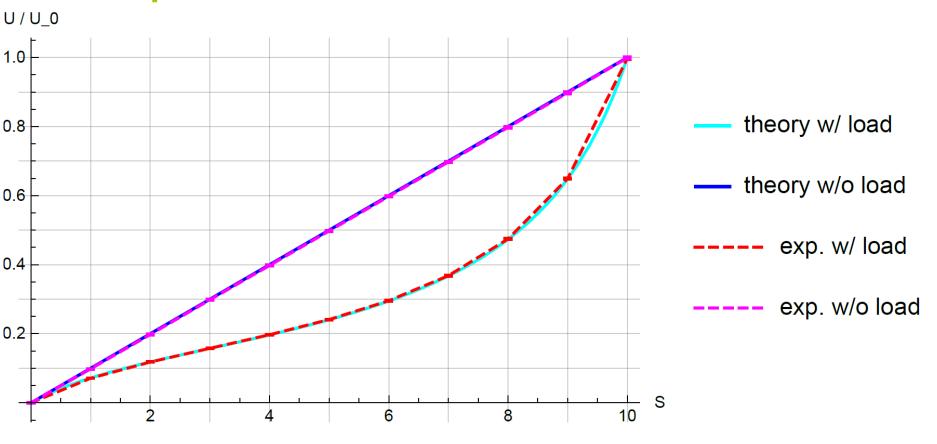

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$


Quelle: Wikipedia

Quantenmechanik

Studienvoraussetzungen

- Faszination für Physik
- gute Mathekenntnisse
- Nussknacker-Qualitäten
- kein NC = zulassungsfrei


Voraussetzungen

"Selten einfach…

Grundpraktikum 2: Elektrische Messtechnik

....aber meistens spaßig"

Sanfter Studieneinstieg

- Brückenkurs in Mathe
- Erste Klausur ohne Noten
- Mentoring & FSI bieten Hilfe

Studienstruktur – Lehramt

Diverse Module des Zweitfachs

Kernfach Physik

Zweitfach

z. B. Geschichte

90 LP

60 LP

Grundlagen Experimentalphysik

Physikalisches Grundpraktikum 1 & 2

Theoretische Physik 1 & 2

Einführung in die Struktur der Materie

Demonstrationspraktikum

Physikalische Grundkompetenzen

Vertiefung Physik A, B oder C

Moderne Physik

30 LP

60 LP

Bachelorarbeit

zu einem Thema der Physik

LBW – Pädagogik

Pädagogisches Handeln an Schulen Grundlagen der Fachdidaktik

Sprachbildung

Kernfach

z. B. Informatik oder Biologie

Diverse Module des Kernfachs

Zweitfach Physik

90 LP

Grundlagen Experimentalphysik

Physikalisches Grundpraktikum 1 & 2

Theoretische Physik 1 & 2

Einführung in die Struktur der Materie

Demonstrationspraktikum 1

Bachelorarbeit

zu einem Thema des Kernfachs

LBW - Pädagogik

30 LP

Pädagogisches Handeln an Schulen

Grundlagen der Fachdidaktik

Sprachbildung

Flyer

Vorlesung

Übungszettel in Gruppen bearbeiten

Festkörperphysik - Blatt 6 - spezifische Wärme - 27.05.2017

Abgabe: bis Donnerstag 01.06.2017, 16:00

Stichworte: Brillouinzone, spezifischen Wärme, Zustandsdichte

1. Einsteinmodell der spezifischen Wärme (9 Punkte)

Zur Berechnung der spezifischen Wärme nehmen Sie wie Albert Einstein an, dass jeder Oszillator des Festkörpers die gleiche Eigenfrequenz ω_E besitzt.

(a) Berechnen Sie die Gesamtenergiedichte u und die Wärmekapazität c_v als Funktion der Temperatur für N Oszillatoren im Volumen V. Das Ergebnis ist:

$$c_v = \frac{3Nk_B}{V} \left(\frac{\hbar \omega_E}{k_B T}\right)^2 \frac{e^{\hbar \omega_c/k_B T}}{(e^{\hbar \omega_c/k_B T} - 1)^2}$$
(1)

- (b) Bestimmen Sie die Temperaturabhängigkeit der spezifischen Wärme für große und für kleine Temperaturen?
- (c) Vergleichen Sie den Verlauf der spezifischen Wärme im Einstein und im Debye-Modell. Die spezifische Wärme im Debyemodell ist

$$c_v = \frac{9Nk_B}{V} \left(\frac{T}{\Theta}\right)^3 \int_0^{\Theta} dx \frac{x^4 e^x}{(e^x - 1)^2}$$
(2)

Die Debyetemperatur Θ bzw. Θ_D ist materialabhängig $k_B\Theta_D=\hbar\omega_D=\hbar cq_D$. Lösen Sie das Integral numerisch und plotten Sie beide Ergebnisse.

2. Zustandsdichte (8 Punkte)

Berechnen Sie die Zustandsdichte $D(\omega)$ für die einatomige Kette (1 Dimension !) für den Fall der harmonischen Kopplung nur zwischen nächsten Nachbarn.

Hinweis:

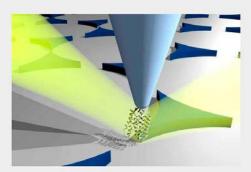
$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

Tutorium

Digitales Studium

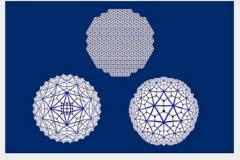
Quelle: Unsplash

Was denken meine Kommilitonen?

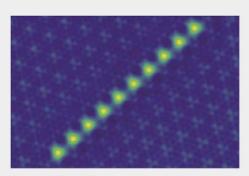

"Selten einfach aber meistens spaßig"
- Maurice

"Atmosphäre ist sehr gut" - Terra studying physics to learn about the universe studying physics to look smart studying physics to make fun of engineers studying physics to learn wtf means

Fritz



Forschungsschwerpunkte


Biophysik

In der Biophysik beschreiben wir physikalische Prozesse in biologischen Systemen und decken die Funktion von biologischen Makromolekülen auf.

Quantenphysik

Wir arbeiten daran, Naturgesetze im atomaren und subatomaren Bereich sowie komplexe Quantensysteme besser zu verstehen.

Nano- und Oberflächenphysik

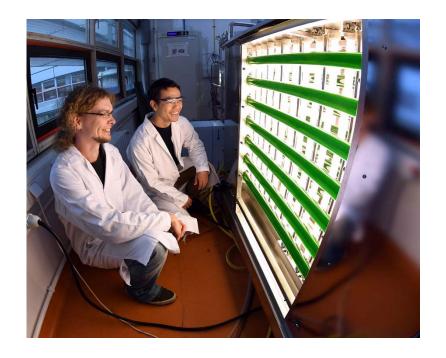
Wir analysieren vielfältige Eigenschaften, die Materialien bei einer Strukturgröße von wenigen Nanometern zeigen, und schaffen neue Kompositmaterialien.

Ultrakurzzeitphysik

Wir nutzen Femtosekunden-Laserimpulse vom Terahertz- bis in den Röntgenbereich, um Filme von extrem schnellen Vorgängen in magnetischen Materialien und biologischen Molekülen aufzunehmen.

Didaktik der Physik

Wir arbeiten an innovativen Lehrund Lernkonzepten für Schule und Universität und entwickeln digitale Lösungen für den Physikunterricht.



Beispiel Biophysik

Wir simulieren Moleküle, um mehr über quantenmechanische Wechselwirkungen auf atomarer Ebene zu erfahren.

Anwendung

- Regenerative Energien
- Umwelttechnologien
- Pharmazie

Beispiel Forschung & Entwicklung

Stefanie Kreft

Studium Master in Physik, Freie Universität

Promotion Cambridge University

Heute Entwicklungsingenieurin für Sensorlösungen; besonderer Fokus auf Sensorik mit IoT Anbindung

Beispiel Beratung

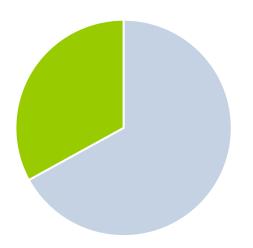
Alexander Goschew

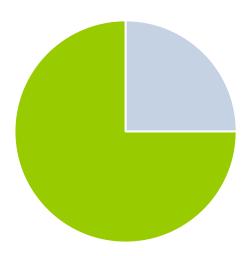
Studium Master in Physik, Freie Universität

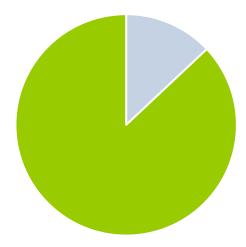
Promotion Freie Universität Berlin

Heute Unternehmensberater im Finanzsektor für Themen wie digitale Transformation

Online-Event "Pathways in Physics" am 27.01.2021




Es lohnt sich

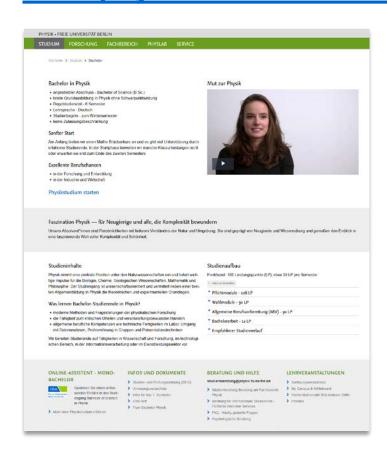

1/3 Aufsichts- und Führungskräfte

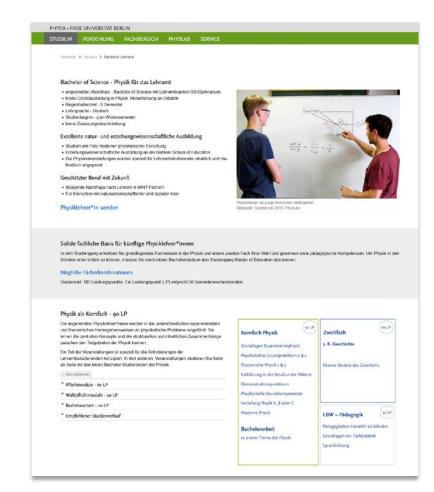
3/4 IT, Finanzen, Beratung, Vertrieb, Management und Lehre

87% würden wieder Physik studieren.

Quelle: Physik Konkret Nr. 36, DPG 2019

Einstiegsgehälter 2020


Absolvent*innen in Naturwissenschaften


Quelle: Stepstone Gehaltsreport für Absolventen, 2020/21

Dein Weg in die Physik

www.physik.fu-berlin.de/studium

Uni im Gespräch 2021 28

Immatrikulationszeitraum

voraussichtlich

15.07.2021 - 04.09.2021

Bewerbung nicht nötig, da zulassungsfrei

Studienberatung

info-service@fu-berlin.de studienberatung@physik.fu-berlin.de

Freie Universität kennenlernen

Pathways in Physics

Online-Event über Erfahrungen und Perspektiven www.physik.fu-berlin.de/pathways

MINToring für Schülerinnen

Workshops

www.fu-berlin.de/mintoring

Freie Universität kennenlernen

inFUtage digital

14.06. - 16.06.2021

Vorträge, (hybride) Führungen

www.fu-berlin.de/infutage

Sommeruni digital

26.07. - 6.08.2021

Kurse, Vorlesungen, Workshops

www.fu-berlin.de/sommeruni

Cool und familiär

Berlin Dahlem ist schön

Exzellente Forschung

Wir sehen uns an der Freien Universität Berlin!

