Automatische Sentimentanalyse zwischen Hotel und Parlament

Manfred Stede Universität Potsdam

Digital * Humanities im Gespräch / FU Berlin / 6. Dezember 2018

Overview

• Sentiment analysis: Introduction, Terminology

• One system: SO-CAL

• Application: Political text

• Application: Narrative

• Viewpoint: Sentiment / DH

University,

One Bolzano hotel @ tripadvisor.com "Mixed feelings" ●●●○○ Reviewed 3 days ago □ via mobile Firstly the good points We had a very large room with fantastic bathroom and walk in closet. There was a good breakfast selection and possible to eat outside. There was a pretty garden with an outside bar and it was nice to sit outside after dinner. Location was excellent and a couple of minutes walk to the main square.... More ▼ Helpful? Thank AJG7

Near-Synonyms?

- Opinion mining
- Sentiment analysis
- Subjectivity analysis

Subjectivity

- I don't like this wine.
- There is a cat on the mat.
- I'm dizzy.
- Peter adores Barack Obama.
- I don't think that Trump can win the election.
- Last night I met this really nice musician.
- Hooray!
- That's probably a dromedar, not a camel.

Manfred Stede (Uni Potsdam)

Subjectivity

- The linguistic expression of somebody's opinions, sentiments, emotions, evaluations, beliefs, speculations (Wilson/Wiebe: MPQA guidelines)
- Private state: state of a speaker/writer that is not open to objective observation or verification

Quirk, Greenbaum, Leech, Svartvik (1985). A Comprehensive Grammar of the English Language.

 Automatic subjectivity analysis classifies content as objective or subjective

Subjectivity

- Sentiment: an attitude or feeling (not necessarily directed toward something)
- Opinion: an evaluation of something (necessarily directed)
- => Sentiment analysis and Opinion mining overlap, but there can be sentiment analysis that does not mine opinions (e.g., capture the general mood in the newspapers)
- In practice, most automated systems reduce evaluation to polarity

Manfred Stede (Uni Potsdam)

Text-level sentiment analysis

- Firstly the good points We had a very large room with fantastic bathroom and walk in closet. There was a good breakfast selection and possible to eat outside. There was a pretty garden with an outside bar and it was nice to sit outside after dinner. Location was excellent and a couple of minutes walk to the main square.
- => positive

Jniversitate

Text-level sentiment analysis

- Firstly the good points We had a very large room
 with fantastic bathroom and walk in closet. There
 was a good breakfast selection and possible to eat
 outside. There was a pretty garden with an outside
 bar and it was nice to sit outside after dinner.
 Location was excellent and a couple of minutes walk
 to the main square.
- => positive

Manfred Stede (Uni Potsdam

The most basic approach

Lexicon of words with prior polarity

- excellent, fantastic, good, nice, ...
- boring, terrible, uncool, ugly, ...

Simple Method:

- Preprocess the text (stemming, lemmatization)
- Count positive and negative words in document

Units for sentiment analysis

- Text
 - assume it has one topic and one overall orientation
- Paragraph
 - likewise; can compute text orientation afterward
- Sentence
 - likewise; can compute para orientation afterward
- Phrase
 - can capture things like
 While the breakfast was good, I couldn't stand dinner

Manfred Stede (Uni Potsdam)

Extensions (1): Polar facts

Firstly the good points We had a very large room
with fantastic bathroom and walk in closet. There
was a good breakfast selection and possible to eat
outside. There was a pretty garden with an outside
bar and it was nice to sit outside after dinner.
Location was excellent and a couple of minutes walk
to the main square.

Extensions (2): Aspects

Firstly the good points We had a very large room
with fantastic bathroom and walk in closet. There
was a good breakfast selection and possible to eat
outside. There was a pretty garden with an outside
bar and it was nice to sit outside after dinner.
Location was excellent and a couple of minutes walk
to the main square.

Manfred Stede (Uni Potsdam)

Extensions (2): Aspects

Firstly the good points We had a very large room
with fantastic bathroom and walk in closet. There
was a good breakfast selection and possible to eat
outside. There was a pretty garden with an outside
bar and it was nice to sit outside after dinner.
Location was excellent and a couple of minutes walk
to the main square.

Extensions (3): Fine-grained analysis

While the breakfast was good, I couldn't stand dinner

Manfred Stede (Uni Potsdam)

Extensions (3): Fine-grained analysis

[While the breakfast was very good,]_{opin1} [I couldn't stand dinner]_{opin2}

- Words with prior polarity
- Intensifiers/diminishers
- Source
- Target

Extensions (4): Entity-level sentiment

Roger Federer won the match against Nadal, who had been fervently supported by the audience.

Manfred Stede (Uni Potsdam)

Extensions (4): Entity-level sentiment

Roger Federer won the match against Nadal, who had been fervently supported by the audience.

What is good or bad for whom?

Roger Federer **won** the match against Nadal, who had been fervently supported by the audience.

Extensions (4): Entity-level sentiment

Roger Federer won the match against Nadal, who had been fervently supported by the audience.

What is good or bad for whom?

Roger Federer **won** the match against Nadal, who had been fervently supported by the audience.

Manfred Stede (Uni Potsdam

Extensions (4): Entity-level sentiment

Roger Federer won the match against Nadal, who had been fervently supported by the audience.

What is good or bad for whom?

Roger Federer **won** the match against **Nadal**, who had been fervently **supported by** the audience.

I can't say that I enjoyed my stay at the Belvedere Hotel. Other reviewers said it's a great place, but my impression was otherwise. Neither was the food particularly good, nor did we consider the location very convenient. Just a standard place to live for a day, that's it.

Manfred Stede (Uni Potsdam)

I can't say that I enjoyed my stay at the Belvedere Hotel. Other reviewers said it's a great place, but my impression was otherwise. Neither was the food particularly good, nor did we consider the location very convenient. Just a standard place to live for a day, that's it.

Extensions (5): Contextual polarity

I can't say that I enjoyed my stay at the Belvedere Hotel. Other reviewers said it's a great place, but my impression was otherwise. Neither was the food particularly good, nor did we consider the location very convenient. Just a standard place to live for a day, that's it.

Manfred Stede (Uni Potsdam)

Overview

- Sentiment analysis: Introduction, Terminology
- One system: SO-CAL
- Application: Political text
- Application: Narrative
- Viewpoint: Sentiment / DH

Oniversitate

SO-CAL

- Semantic Orientation CALculator
- Text-level polarity analysis (graded)
- Selling points:
 - Use crowdsourcing in building a lexicon
 - Rule-based approach to contextual polarity (with some new ideas)
 - Achieves good level of domain-neutrality

M. Taboada / J. Brooke / M. Tofiloski / K. Voll / M. Stede: Lexical Methods for Sentiment Analysis. $Computational\ Linguistics\ 37(2),\ 2011$

Size

2252 adjectives1142 nouns903 verbs745 adverbs

Words collected from 500 movie and product reviews (8 categories, balanced for pos and neg)

Manually ranked on -5 .. 5 scale: prior polarity and strength

Word	SO Value
monstrosity	- 5
hate (noun and verb)	-4
disgust	-3
sham	-3
fabricate	-2
delay (noun and verb)	-1
determination	1
inspire	2
inspiration	2
endear	3
relish (verb)	4
masterpiece	5

Lexical ambiguity

- Sense ambiguity: sometimes resolved via PoS
 - plot: neutral noun, negative verb
 - novel: neutral noun, positive adjective
- Connotation ambiguity: "resolved" by averaging
 - The teacher inspired her students to pursue their dreams.
 - This movie was inspired by true events.

Manfred Stede (Uni Potsdam)

Derivations

- Some nouns **derived automatically** from verb dictionary, but strength can change
 - exaggerate: -1
 - exaggeration: -2
 - also: complicate / complication, etc
 - (hypothesis: general trend?)

Universitate Polisical

Derivations (2)

- Adverb dictionary built from adjectives, by -/y matching
- sometimes value needs to be corrected:

essential / essentially

Word	SO Value			
excruciatingly	-5			
inexcusably	-3			
foolishly	-2			
satisfactorily	1			
purposefully	2			
hilariously	4			

Manfred Stede (Uni Potsdam)

Context: Intensification

- amplifiers (very) downtoners (slightly)
- Polanyi/Zaenen 06, Kennedy/ Inkpen 06:
 add and subtract values
- BUT: degree of intensification should depend more on the word intensified => multiply
- 177 intensifiers in the lexicon

Intensifier	Modifier %				
slightly	-50%				
somewhat	-30%				
pretty	-10%				
really	+15%				
very	+25%				
extraordinarily	+50%				
(the) most	+100%				

really very good₃
3 x (100 + 25%) x (100 + 15%)
= 4.3

Context: Negation

- The acting was not very good.
- Some negators appear at long distance
 - Nobody gives a good performance in this movie.
- Strategy: Look backwards until a clause boundary (punctuation or connective) is reached
 - I don't think this will be a problem.

Manfred Stede (Uni Potsdam)

Context (2): Negation - value change

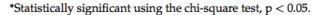
- One approach: polarity flipping (e.g., Choi/Cardie 08)
- Problems
 - excellent: +5
 - not excellent: -5 ??
 - atrocious: -5
- => Use polarity shift (+/-4) rather than flip
 - The food is not terrific (5-4=1) but not terrible (-5+4=-1) either.
 - It's not a spectacular (5 4 = 1) film.

Context (3): Irrealis blocking

- For kids, this movie could be one of the best of the holiday season.
- I thought this movie would be as good as the Grinch, but unfortunately it wasn't.
- **Implementation:** ignore polar words in the scope of an irrealis marker (scope: heuristic)
 - modals
 - conditionality
 - NPIs (any, anything, ..)
 - questions
 - material in quotes
 - certain verbs (doubt, expect, ...)
- This should have been a great movie. (3 -> 0)

Manfred Stede (Uni Potsdam)

Example output


- The food was wonderful. => 5.0
- The food was particularly good. => 3.9
- The food was good. => 3.0
- The food was not bad. => 2.0
- The food was OK. => 2.0
- The food was not particularly good. => -0.1
- I didn't really enjoy the food. => -0.4
- I didn't enjoy the food. => -1.0
- The food was bad. => -3.0

Original Policy

Evaluation: Lexicon complexity

- Use not/recommended value of the review: >0 / <0
- 3 variants of the approach
 - Simple: only 2/-2 values and 1/-1 intensification (Polanyi/Zaenen 06)
 - Only-Adj: use only adjectives
 - One-Word: don't use multi-word expressions
 - Full: complete system as described

Dictionary	Percent correct by corpus						
	Epinions 1	Epinions 2	Movie	Camera	Overall		
Simple	76.75	76.50	69.79*	78.71	75.11*		
Only-Adj	72.25*	74.50	76.63	71.98*	73.93*		
One-Word	80.75	80.00	75.68	79.54	78.23		
Full	80.25	80.00	76.37	80.16	78.74		

Evaluation: Domain (in)dependence

	Epinions	s 1	Epinions 2			
Pos-F	Neg-F	Accuracy	Pos-F	Neg-F	Accuracy	
0.69	0.74	0.72	0.69	0.77	0.74	
0.90	0.89	0.90	0.80	0.75	0.78	
0.94	0.94	0.94	0.90	0.89	0.90	
0.74	0.58	0.68	0.79	0.76	0.78	
0.76	0.67	0.72	0.80	0.70	0.76	
0.84	0.84	0.84	0.76	0.79	0.78	
0.82	0.82	0.82	0.83	0.81	0.82	
0.81	0.78	0.80	0.85	0.83	0.84	
0.81	0.79	0.80	0.81	0.79	0.80	
	0.69 0.90 0.94 0.74 0.76 0.84 0.82 0.81	Pos-F Neg-F 0.69 0.74 0.90 0.89 0.94 0.94 0.74 0.58 0.76 0.67 0.84 0.84 0.82 0.82 0.81 0.78	0.69 0.74 0.72 0.90 0.89 0.90 0.94 0.94 0.94 0.74 0.58 0.68 0.76 0.67 0.72 0.84 0.84 0.84 0.82 0.82 0.82 0.81 0.78 0.80	Pos-F Neg-F Accuracy Pos-F 0.69 0.74 0.72 0.69 0.90 0.89 0.90 0.80 0.94 0.94 0.94 0.90 0.74 0.58 0.68 0.79 0.76 0.67 0.72 0.80 0.84 0.84 0.84 0.76 0.82 0.82 0.82 0.83 0.81 0.78 0.80 0.85	Pos-F Neg-F Accuracy Pos-F Neg-F 0.69 0.74 0.72 0.69 0.77 0.90 0.89 0.90 0.80 0.75 0.94 0.94 0.90 0.89 0.74 0.58 0.68 0.79 0.76 0.76 0.67 0.72 0.80 0.70 0.84 0.84 0.84 0.76 0.79 0.82 0.82 0.82 0.83 0.81 0.81 0.78 0.80 0.85 0.83	

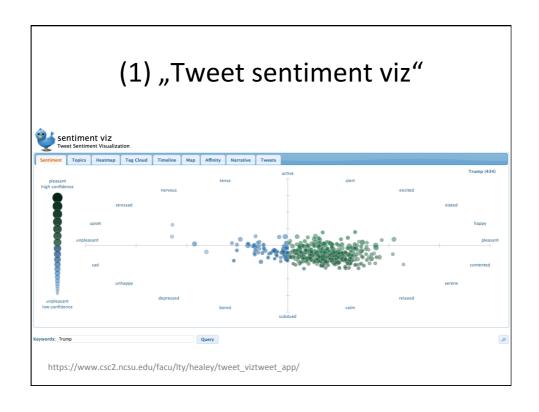
Comparative Evaluation on Tweets

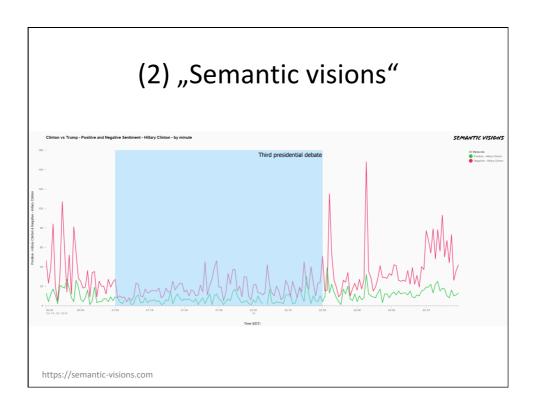
Polarity-	System Scores									
Changing Factors	$_{ m HL}$		\mathbf{TBD}		\mathbf{MST}		$_{ m JRK}$		KLCH	
	Macro $F_1^{+/-}$	Micro F_1	Macro $F_1^{+/-}$	Micro F ₁						
				P	$_{ m otTS}$					
All	0.615	0.685	0.593	0.671	0.606	0.675	0.339	0.467	0.468	0.651
-Negation	0.622	0.691	0.596	0.672	0.641	0.7	0.357	0.473	0.298	0.463
-Intensification	NA	NA	0.595	0.672	NA	NA	0.339	0.467	NA	NA
-Other Modifiers	NA	NA	0.613	0.684	NA	NA	NA	NA	NA	NA

 $\hbox{U. Sidaranka: Sentiment analysis on German Twitter. For thcoming dissertation, Univ. Potsdam}\\$

Overview

• Sentiment analysis: Introduction, Terminology


• One system: SO-CAL

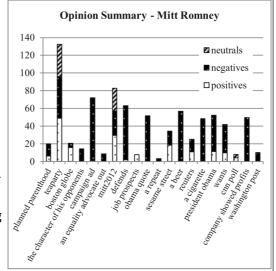

• Application: Political text

• Application: Narrative

• Viewpoint: Sentiment / DH

Universitate

(3) 2008 Primaries: Twitter

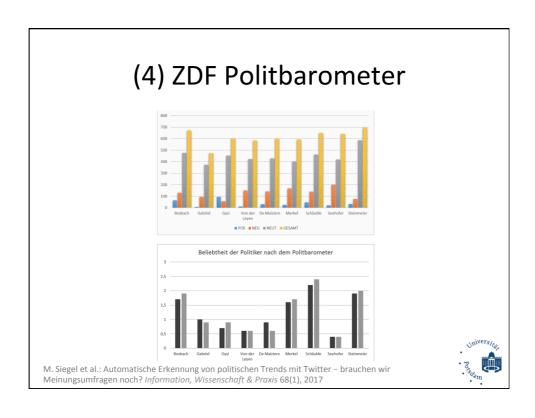

7000 Tweets / candidate

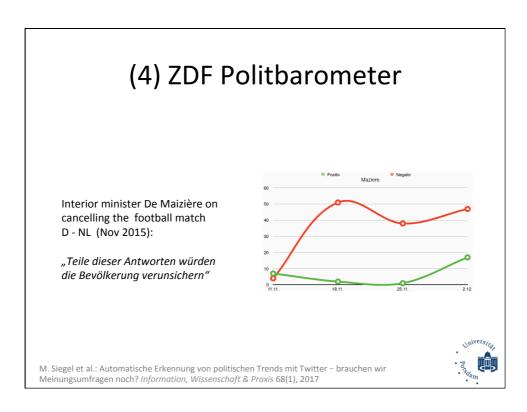
Aspect extraction

 correlation between noun phrases and cand. names via PMI

Sentiment

- use prior polarities from existing lexicon (+ domainspecific adjectives); count
- context: directly preceding negations
- no evaluation




M. Ringsquandl, D. Petkovic: Analyzing political sentiment on Twitter. Proc. of the AAAI Spring Symposium on Analyzing Microtext, 2013

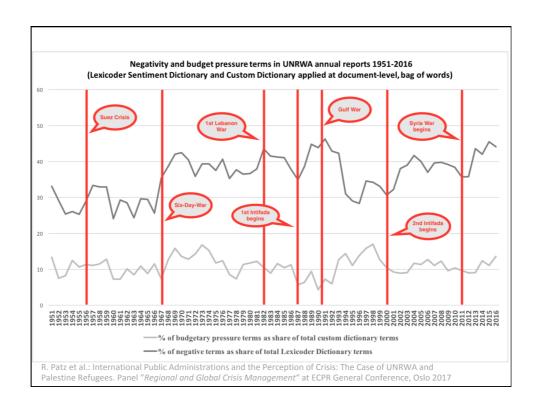
(4) ZDF Politbarometer

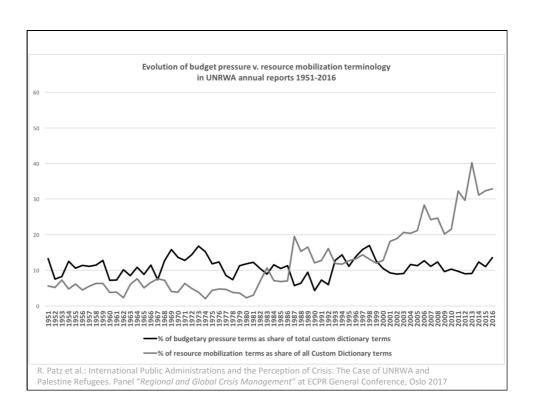
- Student project
- Try automatic analysis (manually-extended lexicon + rules) with context analysis => too difficult!
- Manual analysis of 8000 Tweets
 not easy
- Oezdemir: "Der nächste Verkehrsminister darf nicht mehr von der CSU aus Bayern kommen." Dem ist nichts mehr hinzuzufügen. #Urwahl
- @welt Oh da bewegt sich Seehofer auf sehr dünnem Eis, dasieht nach ein Verpflechtung der Vergangenheit aus.
- #Oettinger wird niemals eine Anästhesistin brauchen. Der Mann ist echt absolut schmerzbefreit.

M. Siegel et al.: Automatische Erkennung von politischen Trends mit Twitter – brauchen wir Meinungsumfragen noch? *Information, Wissenschaft & Praxis* 68(1), 2017

(5) Crisis perception in UNRWA reports

- United Nations Relief for Palestine Refugees (UNRWA)
 - financed largely by voluntary contributions
 resource mobilization is important, especially in times of unexpected demand for action
 - Data set: annual reports 1951-2016
- Hypothesis: Under conditions of policy crisis, international bureaucracies are expected to signal increased budgetary stress to principals, donors and/or the public through documents or speech produced by the bureaucracy.


R. Patz et al.: International Public Administrations and the Perception of Crisis: The Case of UNRWA and Palestine Refugees. Panel "Regional and Global Crisis Management" at ECPR General Conference, Oslo 2017



(5) Crisis perception in UNRWA reports

- Assumption: budgetary pressure coincides with sentiment: negative polarity
- Lexicoder Sentiment Dictionary (Young/Soroka 2012)
 - designed to capture the sentiment of political texts
 - 1710 positive and 2858 negative words
- · Compute negativity of report: neg words / all sentiment words
- · Custom-built lexicon for matters of budget
 - 18 budgetary pressure terms
 - 11 resource mobilization-related terms
 - 9 terms of financial matters, in particular income
 - 4 expenditure-related terms
- Compute share of budgetary pressure terms among all budget terms in report

(5) Authors' conclusions

- Interpretation has to be done with caution, but:
 - Sentiment detection is able to detect shifts in negativity over time,
 - which can be interpreted as shifts of crisis perception. (Correlation with events)
 - Diverging results in late 1980s: policy crisis increases, budgetary stress decreases
 - => due to successful resource mobilization?

Oniversitate

Manfred Stede (Uni Potsdam)

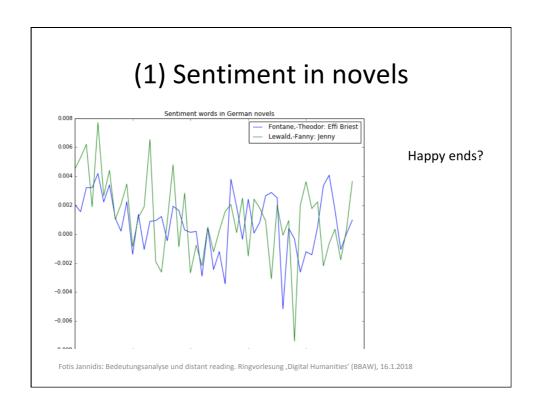
(6) Parliamentary debate

- House of Commons (GB)
 - Motion
 - Speeches
 - Vote
- Motion often contains sentiment (polarity)
 => polarity in speeches needs to be interpreted relative to the motion polarity!
- Corpus: 1997 2017
 - 1251 motion-speech units from 129 debates
 - unit has max. 5 utterances (avg. 1049 words)
 - motion also gets a government/opposition label
 - speech gets both a text-based label and a vote-based label (concurrence: 92.8%)

Gavin Abercrombie and Riza Batista-Navarro: A Sentiment-labelled Corpus of Hansard Parliamentary Debate Speeches . Proc. of Language Ressources and Evaluation Conference (LREC), 2018

Overview

• Sentiment analysis: Introduction, Terminology


• One system: SO-CAL

Application: Political text

Application: Narrative

• Viewpoint: Sentiment / DH

(2) Sentiment in Lessing's dramas

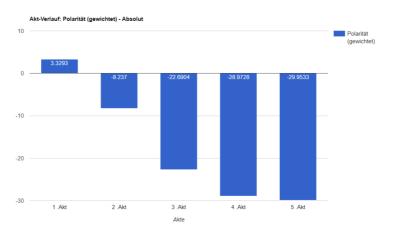
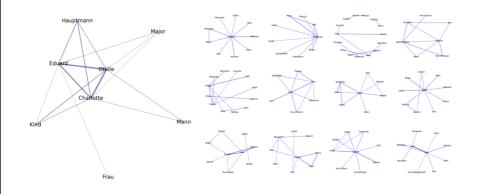


Figure 3. Polarity progression for Emilia Galotti per Act


T. Schmidt, M. Burghardt: An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of Gotthold Ephraim Lessing. Proc of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, Santa Fe, 2018.

(2) Sentiment in Lessing's dramas

- Manual annotation of 200 snippets
 - agreement: kappa 0.4 => quite difficult
- Automatic analysis using different German sentiment dictionaries
 - accuracy: 70% (much lower than in other tasks)
- Problems
 - Orthography (e.g., betriegen, bös)
 - Vocabulary (e.g., verdrießlich, pfui)
 - Diachronic change (e.g., Freier)

T. Schmidt, M. Burghardt: An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of Gotthold Ephraim Lessing. *Proc of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature*, Santa Fe, 2018.

(3) Character constellations

Fotis Jannidis: Bedeutungsanalyse und distant reading. Ringvorlesung ,Digital Humanities' (BBAW), 16.1.2018

Overview

- Sentiment analysis: Introduction, Terminology
- One system: SO-CAL
- Application: Political text
- Application: Narrative
- Viewpoint: Sentiment / DH

Summary

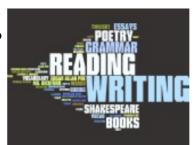
Methods

- Lexicon-based vs machine learning
- Word counting
- Graded judgement
- Context: negation, irrealis, ...
- Example: SO-CAL
- Polar facts
- Aspect-based analysis
- Fine grain: source, target, opinion
- Entity level: sentiment "flow"

Manfred Stede (Uni Potsdam)

Applications

- Product reviews
- · Political text
 - Word matching for Twitter analysis
 - Word matching for crisis perception in annual reports
 - Parliamentary debate
- Narrative
 - Polarity development in drama
 - Happy end?
 - Character constellations


Viewpoint: Sentiment analysis in DH

 Sentiment analysis has great potential for interesting and fruitful applications in the Humanities.

Viewpoint: Sentiment analysis in DH

- Using quite simple methods, for certain texts and purposes one can achieve good results.
- But not for all texts and purposes.
- The "wordle trap"
 - quality evaluation?
 - dependence on domain and genre
 - (e.g., small)

Manfred Stede (Uni Potsdam)

Viewpoint: Sentiment analysis in DH Big Data Blog Alles über die Welt von Big Data Alles über die Welt von Big Data Startseite Alles über Big Data Unsere Leistungen News & Trends Artikel Videos Kontakt S. Januar 2016 Startseite Alles über Big Data Analytics 7 min. Lesszeit Digital Humanities: Über das Potenzial von Big Data in den Geistes- und Kulturwissenschaften https://bigdatablog.de/2016/01/05/digital-humanities-ueber-das-potenzial-von-big-data-in-den-geistes-und-kulturwissenschaften/

Viewpoint: Sentiment analysis in DH

- "Read close (too)!"
- Context matters but in what ways, exactly?
- Domain and genre matter but where do we draw the lines?
- Annotation guidelines for difficult sentiment problems => let's debate!
- Annotated corpora => let's debate!
- => Machine learning

Janfred Stade (Lini Botsdam)

Thank you!