Spidercharts as an instrument for the participatory development of elements of inquiry-based learning in university teaching

Johanna Ruge, Reinhard Hochmuth, Sarah Khellaf, Jana Peters

The teaching innovation project Partnership for Learning and Teaching in The project is based on the teaching-learning and development concept of University Mathematics [PLATINUM] shares the common vision of the the Community of Inquiry (see Jaworski, 2006). expansion of inquiry-based mathematics education [IBME] in university The spidercharts are inspired by the wheel-model (Brew, 2013) & the doubleteaching. Mathematicians and didacticians from 8 European universities have come together to further develop concrete approaches to IBME in university teaching and to implement and reflect on these in their local communities.

wheel-model (Lübcke, Reinmann & Heudorfer, 2017). Characteristics and quality nuances are based on research literature on IBME (Artigue & Blomhøj, 2013; Dorier & Maass, 2014) & reflections within the PLATINUM community.

Inquiry Learning

Example from Leibniz University Hannover:

making observations

• The <u>hint</u> guides students to include materials that structure what shall be observed (limiting the openness). We chose the middle qualitative box.

exploration

cooperation

- Negotiations within the group are essential using tools
- Tools are **non-essential** for solving the task

Example Teaching Unit

Inquiry Teaching

- What shall be explored and how is **open** \bullet planning investigations
- The path of possible investigations is **open** formulations of findings
- The way findings shall be formulated is **open** justifying
- 2 parts: math (formal), didactic (open). We chose the middle **quantitative** box. posing questions
- Initial task is closed. In the process of solving, questions posed are open. We chose the middle **qualitative** box.

feedback

- We use **standardized** evaluation- sheets. assessment
- 2 assessment types: Presentation (open) and multiple choice exam (closed). We chose the middle quantitative box.

media

Digital and analog parts. We chose the middle quantitative box.

type of mathematics

2 parts: Math (theoretical), Didactic (applied). We chose the middle **quantitative** box.

Introduction:

An upper high school class is revisiting inflection points in mathematics. One of the pupils draws onto the sheet of his neighbor graph 1 below and comments:

"Listen, I always wondered if a function that straight line looks like this has inflection points everywhere on the straight line. What do you think?"

The neighbor, visibly amused, adds graph 2 below and replies:

"Look, can't you do the same with a parabola? If you flatten it on the lower side like this, wouldn't it then have lots of extremums as well? Infinitely many, even!"

Task:

- Design and implement a "learning activity" [in our mathematics education course] that will enable your fellow students to find a mathematical answer to the above implied questions.
- Additionally, discuss a teacher's possibilities of an inclass reaction to the above interaction.
- <u>Hint:</u> The material provided should suffice to arrive at a solution to the mathematical problem. However, consulting external sources is not prohibited.

content

- It is fixed: We chose **lecturer-chosen** teaching methods
- Active involvement is required. We chose: student-centered

organization of group process

- It is need-oriented. We chose: **open** joint decision making of objectives
- We discuss and update our our objectives on a regular basis. We chose: essential access to group
- Our group works continuously on topics revolving around teacher education. If other colleagues were interested in joining, we would organise extra extended group meetings. We chose: **closed**

discussion

Discussing what is on our agenda and addressing spontaneous discussion points is equally important to us. We chose the middle qualitative box.

tasks

- Students have to formulate concrete subquestions. We chose: weakly formatted scaffolding
- Intentionally no additional scaffolds (besides material). We chose: **reduced facilitation**

evaluation

- We have open discussions about the progress of our group work. We chose: **formative** reflection on professional growth
- We explicitly reflect on how the group meetings foster our professional growth. We do this infrequently, but it is important. We chose the middle **qualitative** box.

reflection on teaching

We reflect topics in more general terms (e.g. discussing theories) as well as with regard to specific situations. We chose the middle qualitative box.

planning

We regularly plan teaching units together. We chose: essential

All three spidercharts are **reflection tools** that shall

- present the common vision of PLATINUM \bullet
- help to reflect on and characterize the creative leeway in designing ulletteaching units
- serve the futher growth of the local communities
- structure reflection processes alongside different characteristics of *inquiry learning, inquiry teaching* and the work in *groups of inquiry*.

References

Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797-810. Brew, A. (2013). Understanding the scope of undergraduate research: a framework for curricular and pedagogical decision-making. Higher Education, 66, 603-618. Dorier, J. L., Maass, K. (2014). Inquiry-Based Mathematics Education. In: Lerman S. (Ed.) Encyclopedia of Mathematics Education. Springer, Dordrecht Lübcke, E., Reinmann, G., Heudorfer, A. (2017). Entwicklung eines Instruments zur Analyse Forschenden Lernens. Zeitschrift für Hochschulentwicklung (zfhe), Jg.12/Nr.3. Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as a mode of learning in teaching. JMTE, 9(2), 187-211.

