

Spring Campus, March 27-31, 2017 Research Workshop III: "Climate Change in Cities. Mitigation, Adaptation"

Nikolai Bobylev

# Local Responses to the Global Environmental Change: Review of the Urban Underground Space Resource Use for Adaptation and Mitigation of Climate Change

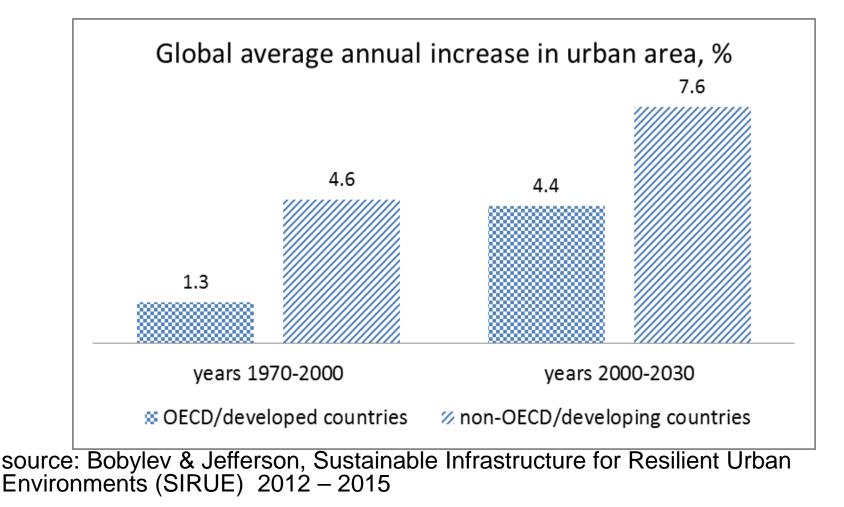
E-mail: n.bobylev@spbu.ru

#### **Overview**

-Global Environmental Change

-Urban Underground Space Resources

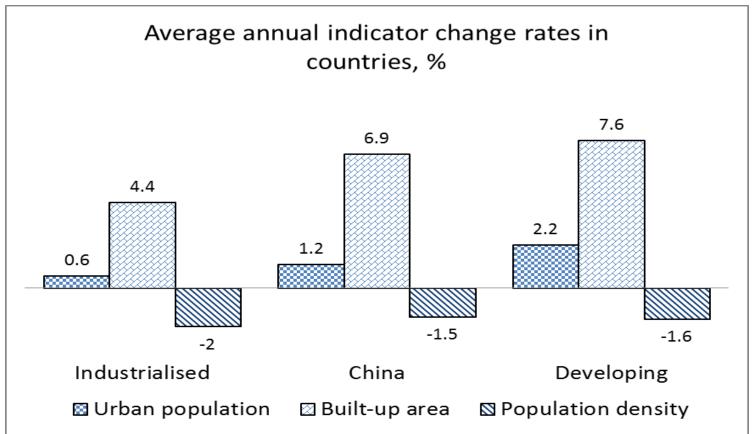
-Urban Underground Space Resource Use for Adaptation and Mitigation of Climate Change


-Examples & discussion on environmentally friendly solutions (smart, resilient, carbon neutral, energy recovery, sound proof, liveable)

-Policy recommendations - Three-Dimensional Planning

-Tunnelling and Underground Space Technology, Elsevier. Special Issue Volume 55 – UUS Research & Development Agenda

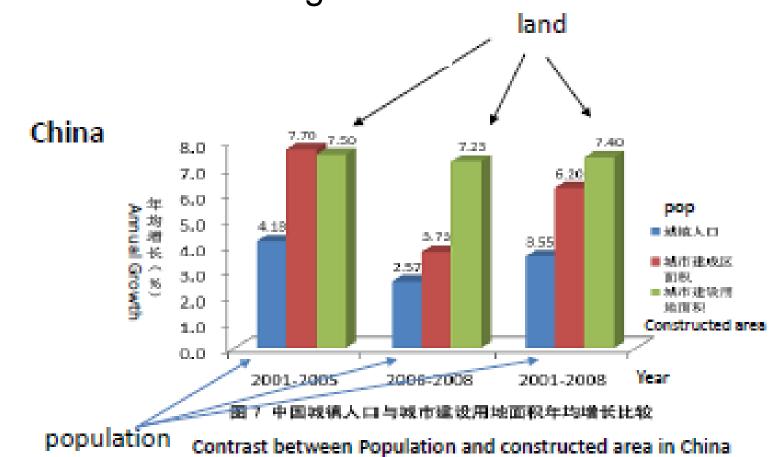
# Underlying drivers for contemporary UUS growth (urbanization, density, environment),






Data: Goldewijk K. and Van Drecht G., 2006; OECD 2008, Angel et al, 2005 \*tolerances: built-up area equals urban area; OECD countries equals developed equals industrialised countries.

# Underlying drivers for contemporary UUS growth (urbanization, density, environment)


Policy = Urban sprawl? A Compact city?

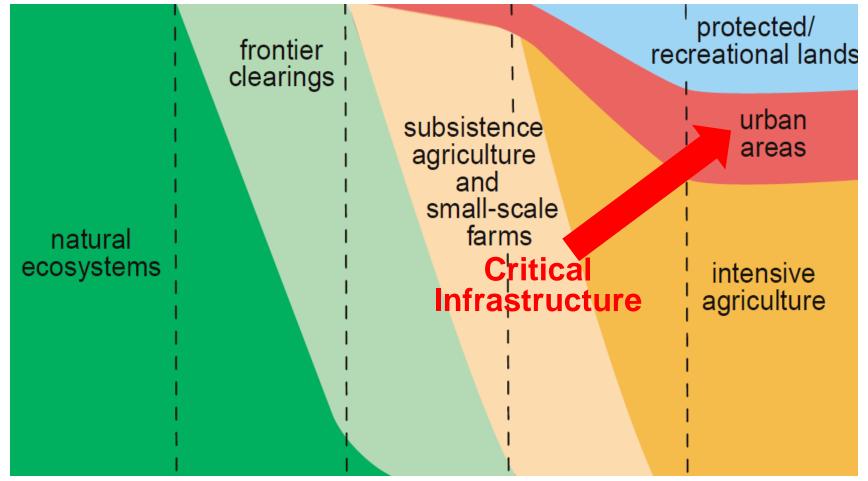


source: Bobylev & Jefferson, Sustainable Infrastructure for Resilient Urban Environments (SIRUE) 2012 – 2015

Calculated using data from: China Urban Development Report, 2010; He et al, 2012; UN-Habitat, 2011; Angel et al, 2005; UN-Habitat, 2013. \*tolerances: built-up area equals urban area, excluding major green areas and water bodies; OECD countries equals to (1) developed (2) industrialised countries; data for China is for the years 2000 - 2009, data for the urban population is for the years 2010 - 2020, data for urban population density is for the years 1990 – 2000, the rest data is for 2000-2030.

# Underlying drivers for contemporary UUS growth (urbanization, density, environment)



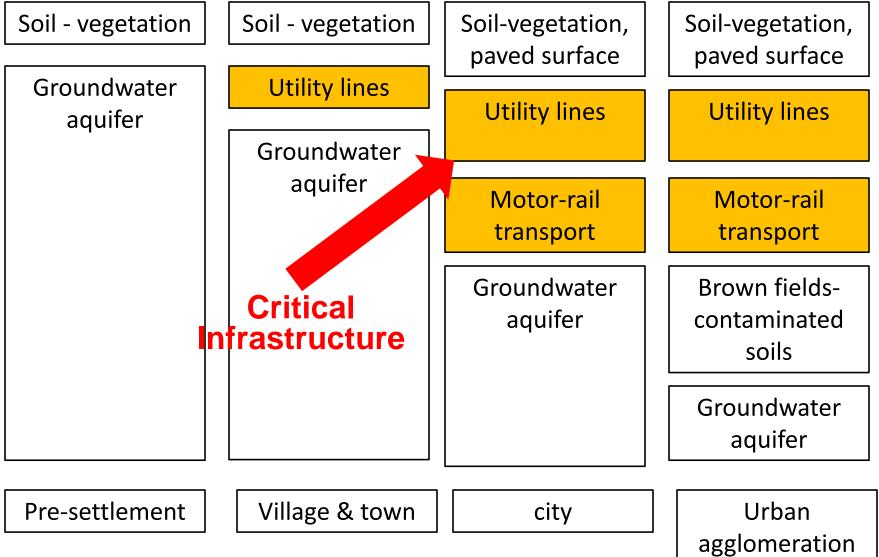

Facts = Land cover change!

Source: Dr. Ling Xue, Towards sustainability: 'new' urbanization, new planning. Spring Campus, April 11-15, 2016

Source: HoukaiWei, Contrast between Population and constructed area in China

# Underlying drivers for contemporary UUS growth (urbanization, density, environment),

## Land-use transitions

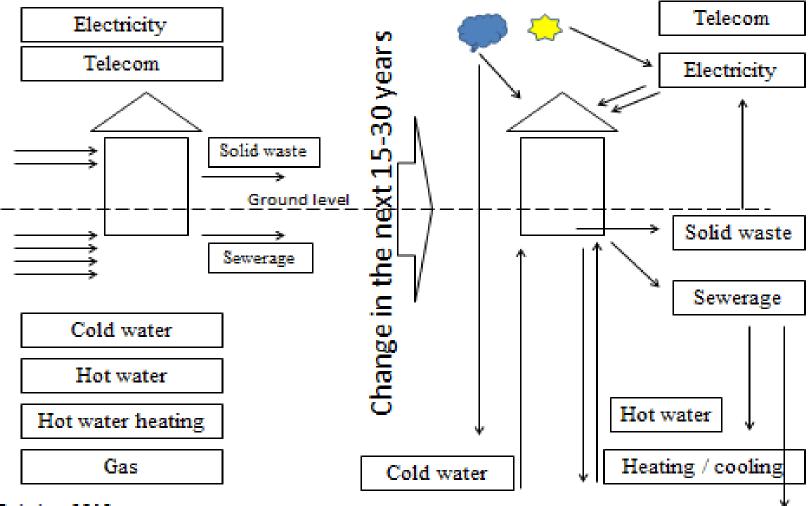



#### source: DeFries et al 2004

A sequence of different land-use regimes that may be experienced within a given region over time: from presettlement natural vegetation to frontier clearing, then to subsistence agriculture and small-scale farms, and finally to intensive agriculture, urban areas, and protected recreational lands.

# Underlying drivers for contemporary UUS growth (urbanization, density, environment),

Urban Underground Space (UUS) use transitions



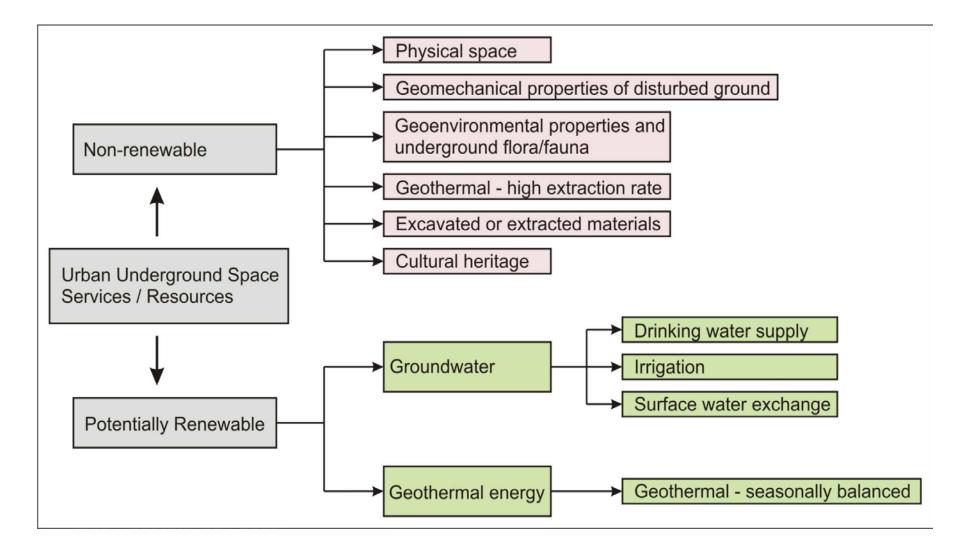

Bobylev & Jefferson, 2014

#### **Urban Physical Infrastructure:**

### adaptation, transformation, transitions?

Housing and Infrastructure Futures




Bobylev, 2013

Housing support infrastructure development trends (from Bobylev, upcoming)

#### **UUS services and resources**

## UUS resources (after Parriaux, Bobylev, Sterling)

Sustainability Issues for Underground Space in Urban Areas (2012) Sterling, R., Admiraal, H., Bobylev, N., Parker, H., Godard, J.P., Vähäaho, I., Rogers, C.D.F., Shi, X., Hanamura T. *Proceedings of the ICE - Urban Design and Planning* 



#### Sustainability and resilience goals in urban development

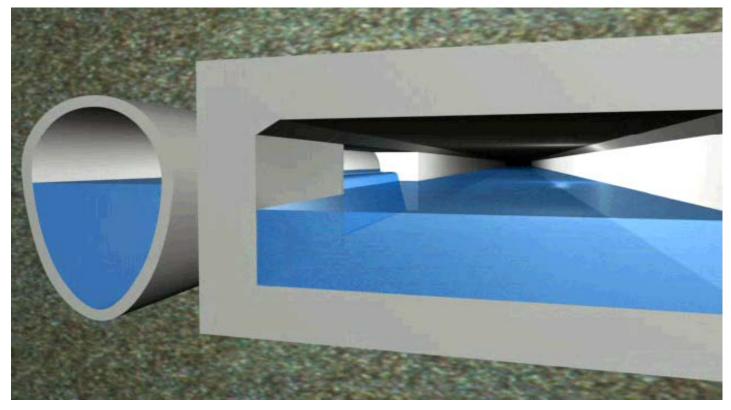
Elements of resilience and sustainability related to urban development, Bobylev 2016

| Urban challenges (liveability           | Resilience                                                                                                                                                               | Synergy or conflict; strong  | Sustainability                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------|
| improvement)                            |                                                                                                                                                                          | or moderate                  |                                                                                                               |
| Utility services provisioning           | Reliable provisioning of infrastructure services, backup infrastructure                                                                                                  | Moderate conflict            | Frugal resource use, reduced utility services<br>consumption, saving energy while<br>infrastructure operation |
| Infrastructure spatial arrangement      | Wide, ample space for each infrastructure<br>element to avoid disturbance in case of the<br>other failure                                                                | Strong conflict              | Tight, aimed at saving space, energy, and materials                                                           |
| Housing                                 | Safe, adapted to withstand disasters                                                                                                                                     | Moderate conflict            | Liveable and energy efficient                                                                                 |
| Public spaces                           | Designed to have additional capacity for disaster response and reduction                                                                                                 | Moderate conflict            | Designed to encourage sustainable lifestyles                                                                  |
| Transport                               | Reliable transport links, designed to<br>withstand variety of stresses while<br>maintaining services                                                                     | Strong conflict              | Minimal, aimed at consuming minimal energy                                                                    |
| Green and recreational areas            | Ample, to adsorb disaster shocks and provide refuge                                                                                                                      | Strong synergy               | Ample, to provide quality of life                                                                             |
| Optimal urban form                      | Polycentric, to diversify risks                                                                                                                                          | Moderate synergy             | Compact, to save energy                                                                                       |
| Society                                 | Coherent and informed                                                                                                                                                    | Strong synergy               | Coherent and informed                                                                                         |
| Population and building stock densities | Optimal, not too low to be able to organize<br>common protection (flood management)<br>and not too high to enable disaster response<br>(proximity of emergency services) | Unknown/specific to location | Optimal, not too low to save land and energy<br>and not too high to enable quality of life<br>10              |
| Climate change                          | Increase industrial activities to be able to                                                                                                                             | Strong conflict              | Decrease industrial activities to reduce                                                                      |

# **Urban Underground Space Resource Use for Adaptation and Mitigation of Climate Change**

| Mitigation issues                                   | Underground Space relevance               |  |
|-----------------------------------------------------|-------------------------------------------|--|
| Compact city, low energy for mobility               | Enabler for compactness and densification |  |
| Compact city, low losses in energy infrastructure   | Enabler for compactness and densification |  |
| Low energy use for indoor human optimal temperature | Underground buildings, premises           |  |
| Local renewable energy                              | Geothermal, energy storage                |  |

# **Urban Underground Space Resource Use for Adaptation and Mitigation of Climate Change**


| Adaptation issues                  | Underground Space relevance                                     |
|------------------------------------|-----------------------------------------------------------------|
| Response to extreme weather events | Shelter provider                                                |
| Urban heat island                  | Refuge provider, enabler for low energy premises                |
| Changes in hydrogeological cycle   | Underground buildings and infrastructure<br>could be vulnerable |
|                                    |                                                                 |

### Climate change related threats to UUI and vulnerabilities

| Climate-related                                                          | Impacts on UUI                                                                                                               | Vulnerability | <u>Damage</u>                                                                                      |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------|
| threat                                                                   |                                                                                                                              |               |                                                                                                    |
| Floods, Extreme rainfall                                                 | Inundation of underground structures<br>through open structural elements,<br>like entrances, sewers or ventilation<br>shafts | High          | Structural damage is low;<br>damage to equipment is high<br>unless waterproofing doors are<br>used |
|                                                                          | Inundation of underground structures<br>through leakages in retaining<br>structure due to high water pressure                | Low           | Low if leakages are not continues                                                                  |
|                                                                          | Suffusion of surrounding soil due to<br>change in water level during the<br>flood                                            | Low           | Extremely high, up to structural collapse                                                          |
|                                                                          | Sewers and rainwater collectors<br>overcapacity operation, which might<br>result in their structural damage                  | Medium        | Medium                                                                                             |
| Sea level rise, and subsequent rise<br>of surface and groundwater levels | Structural damage due to changing<br>soil stress-strain condition, "floating<br>up" of underground structures                | Low           | Medium. High in case of<br>prolonged UUI maintenance<br>neglect                                    |
| Extreme atmospheric temperatures                                         | Ventilation systems can become temporary not operational.                                                                    | Low           | Low                                                                                                |
| Extreme wind                                                             | Ventilation shafts can be structurally damaged                                                                               | Low           | Medium                                                                                             |

Urban Underground Space Resources Use for Adaptation to Climate Change

UUI adaptation to climate change (to extreme weather events)



A storm water storage tank (right) adjacent to a sewer (left). Source: Berliner Wasserbetriebe and Department of Urban Water Management, Berlin Institute of Technology.

### Adaptation versus Mitigation and Resilience versus Sustainability

## An example: Adaptation to climate change

A problem of urban water runoff after heavy rain:

climate change increases occurrence of extreme weather events (including urban flash floods)

## Ensuing problems:

- •Flooding and inundation
- •Untreated water discharge into surface water bodies;
- •Infrastructure damage;
- •Disruption if critical (vital) urban services

# Adaptation versus Mitigation and Resilience versus Sustainability

# <u>An example:</u> Adaptation to climate change <u>A problem of urban water runoff after heavy rain</u>

## **Conventional solutions:**

- •Reduce runoff (trees, green zones); (resilient & sustainable)
- •Increase capacity of drainage infrastructure (resilient & not sustainable)
- Smart city solutions (resilient & sustainable)
- •Manage runoff between city areas (valves, barriers, automated water management (smart grids)).
- •Inform citizens to temporary cut domestic water use (e.g. for one-two hours).



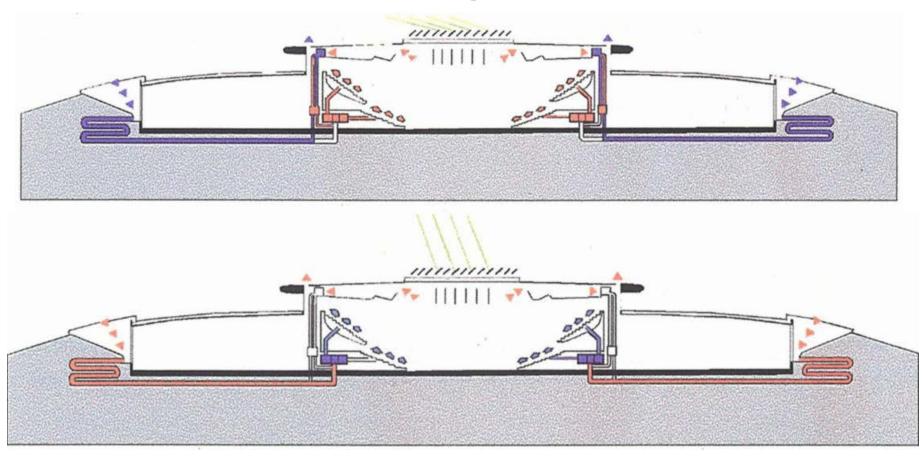


# Adaptation versus Mitigation and Resilience versus Sustainability

#### A problem of urban water runoff after heavy rain

<u>G-Cans Tokyo:</u> resilient & not sustainable

- •Resolves urgent problem
- •Uses a lot of resources to build and operate
- •Stems form an unsustainable land use decisions (unmanaged excessive runoff)
- •De facto facilitates climate change



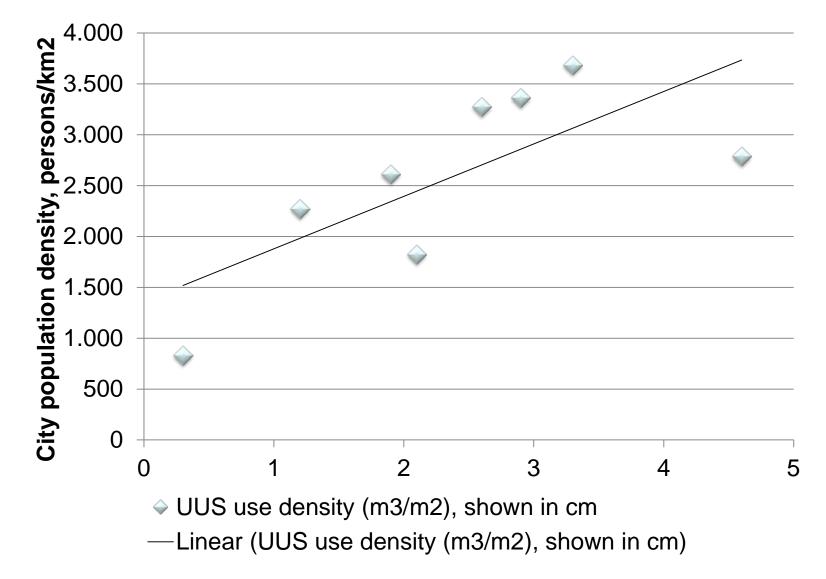

### Urban Underground Space Resources Use for Mitigation of Climate Change Max-Schmeling Halle, Berlin

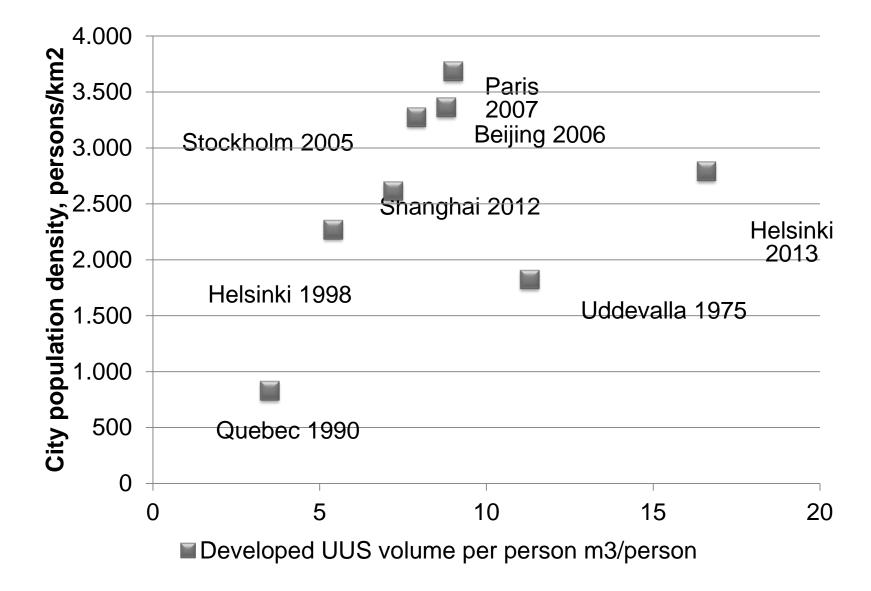


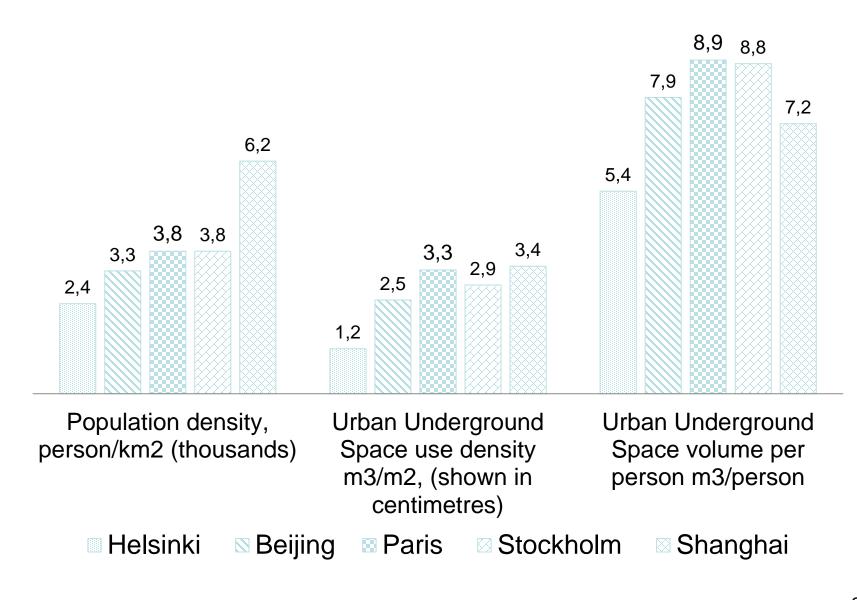
Photo: Sebastian Greuber – Max-Schmeling Halle, Berlin

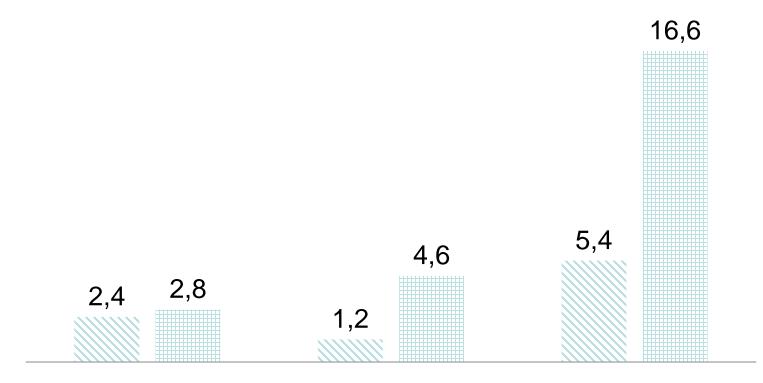
## **Max-Schmeling Halle, Berlin**




Drawing: Jörg Joppien

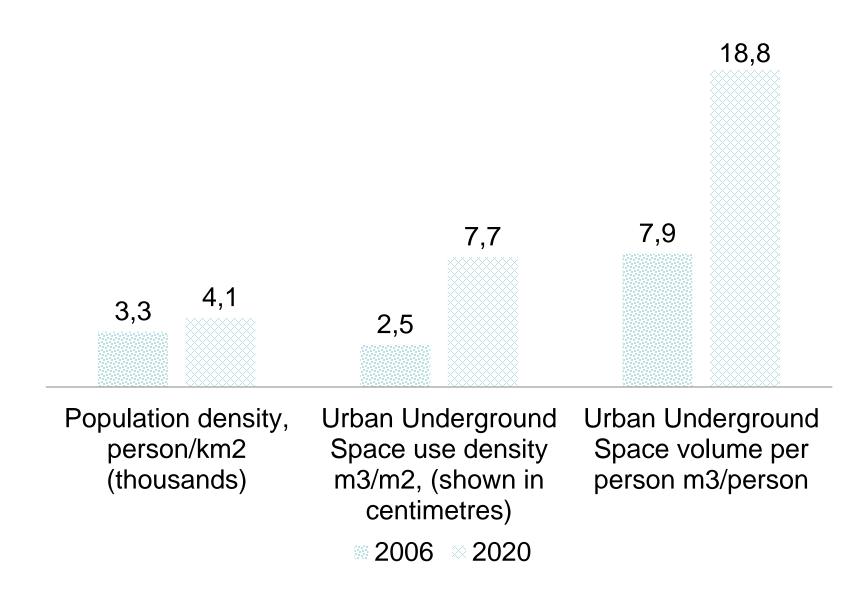

**Urban Underground Space Resources Use for Mitigation of Climate Change** 


The Landtunnel Utrecht at Leidsche Rijn, Utrecht




Source: Frank van der Hoeven, 2010. Landtunnel Utrecht at Leidsche Rijn: The conceptualisation of the Dutch multifunctional tunnel. Tunnelling and Underground Space Technology, Volume 25, Issue 5, September 2010, Pages 508-517

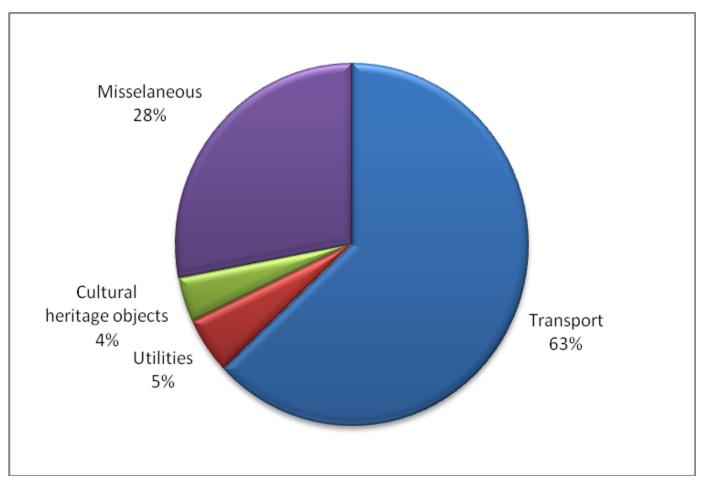








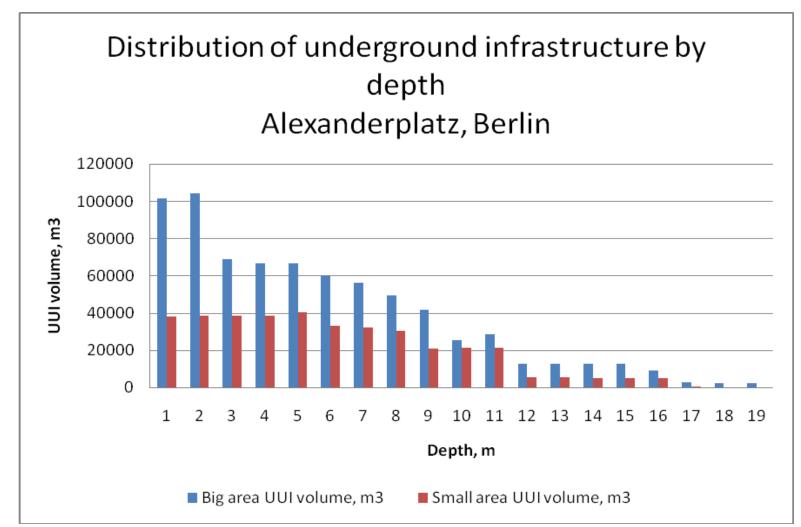

Population density, Urban Underground Urban Underground person/km2 Space use density Space volume per (thousands) m3/m2, (shown in person m3/person centimetres)


≥ 1998 # 2013

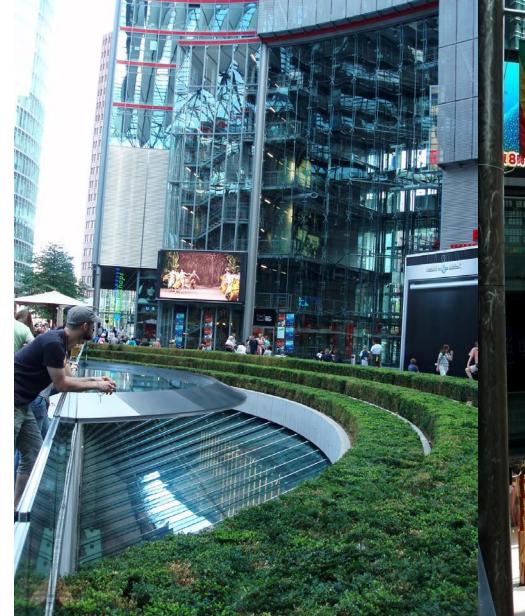


0,94 Paris Helsinki 0,92 Stockhol 0,9 88,0 88,0 88,0 86,0 4 m  $\diamond \diamond$ \_\_\_\_\_ 0,82 Shanghai 0,8 Beijing 0,78 5 10 0 15 20 UUS use density (m3/m2), shown in cm Developed UUS volume per person m3/person

#### **UUI state-of-the-art: Berlin**


Analytical estimation of urban underground space use by function (Berlin, Alexanderplatz)




Source: Bobylev, Nikolai (2010) Underground Space Use in the Alexanderplatz Area, Berlin: research into the quantification of Urban Underground Space use. Tunnelling and Underground Space Technology, Elsevier, 31p

#### **UUI state-of-the-art: Berlin**

#### **Quantification & statistics on UUI**



Source: Bobylev, Nikolai (2010) Underground Space Use in the Alexanderplatz Area, Berlin: research into the quantification of Urban Underground Space use. Tunnelling and Underground Space Technology, Elsevier, 31p



Berlin, Potzdamer Platz & Sony Centre; Tokyo, Shiodome Photo: Nikolai Bobylev



## **Policy Summary**

Cities: addressing Sustainability, Resilience

Cities: addressing Global Environmental Change (and climate change )

Cities: Overarching goal: Quality of Life?

Cities: green, sustainable, liveable, smart, climate-neutral, resilient

## Key policies:

- -urban density and efficiency
- -master planning, 3D planning, democratic, expert-based, political, coherent with other policies

*Tunnelling and Underground Space Technology, Elsevier Special Issues* 2015-2016

Tunnelling and Underground Space Technology incorporating Trenchless Technology Research Editor-in-Chief: Jian Zhao 5-Year Impact Factor: **1.833** 

http://www.journals.elsevier.com/ tunnelling-and-underground-space-technology/

# Special Issues

The Emergence of Underground Space Use Planning and Design Virtual Special Issue from Underground Space (1976—1985)

Improvements in Underground Space Utilization and Planning Virtual Special Issue (1986 – 2014)

Urban Underground Space: A Growing Imperative Perspectives and Current Research in Planning and Design for Underground Space Use (2016)



#### Tunnelling and Underground Space Technology, Elsevier Special Issues 2015-2016

## Main themes 2016

Urban Underground Space: A Growing Imperative. Perspectives and Current Research in Planning and Design for Underground Space Use

Sustainability, Resilience, Livability, Urbanization, Futures, Urban development concepts

Resources use, energy, land use, user competition, conflicts of interest

City planning, master plans, zoning, functional use, city case studies

Social sciences perspective: governance, administration, management, institutions, stakeholders, professionals, education, disciplines, policy and legal

Data, analysis, and tools: statistics, quantification, valuation, 3-dimentional mapping, GIS, decision analysis, economics

Human perspective: Architecture, interior design, health, ergonomics, psychology

Special and distinct issues: civil defense, disaster reduction, renewal, rehabilitation, redevelopment, environmental protection

Tunnelling and Underground Space Technology, Elsevier Special Issues 2015-2016

Cities in UUS research

Montreal Shanghai London Malmö Tokyo Toronto Vork Tokyo Toronto Budapest Bary Seoul Hongqiao Ibiza Tongren New Kong Istanbul Oslo Ningbo Lyon Nyon Sydney Hague Berlin San Houston Bengbu Nanjing Berlin San Houston Bengbu Nanjing Hefei Qingdao Hangzhou Osaka Shenzhen Kyoto Quebec Uddevalla Dallas Munich Minneapolis Suzhou Singapore Beijing Helsinki (Word)*It*Out

#### references

Projects:

Bobylev & Jefferson: Sustainable Infrastructure for Resilient Urban Environments (SIRUE) 2012 – 2015. European Comission FP7 PIIF-GA-2010-273861 http://cordis.europa.eu/projects/rcn/100003\_en.html

Bobylev & Parriaux: SNSF Scientific & Technological Cooperation Programme Switzerland-Russia, Ecole polytechnique fédérale de Lausanne, 2011.

Publications:

Bobylev N, Hunt DVL, Jefferson I, Rogers CDF, (2013) Sustainable Infrastructure for Resilient Urban Environments. Published by Research Publishing. pp. 906 – 917. Bobylev, N (2013) Urban physical infrastructure adaptation to climate change. In: J.B. Saulnier and M.D. Varella (eds.), Global Change, Energy Issues and Regulation Policies, Springer. Sterling, R., Admiraal, H., Bobylev, N., Parker, H., Godard, J.P., Vähäaho, I., Rogers, C.D.F., Shi, X., Hanamura T. (2012) Sustainability Issues for Underground Space in Urban Areas. *Proceedings of the ICE - Urban Design and Planning*, 32p. DOI: 10.1680/udap.10.00020 Bobylev, Nikolai (2009) Mainstreaming Sustainable Development into a City's Master Plan: a Case of Urban Underground Space Use. Land Use Policy, Elsevier.

Photo credits:

Nikolai Bobylev;

Berliner Wasserbetriebe and Berlin Institute of Technology;

G-Cans, Tokyo (http://www.g-cans.jp/).



# Thank you for your attention!

# E-mail: nikolaibobylev@gmail.com





Leibniz-Institut für ökologische Raumentwicklung



United Nations Economic Commission for Europe

COMMITTEE ON HOUSING AND LAND MANAGEMENT

