
2, Apr, 2019 10:30-12:30, Session 1: Comparing Climate Change Policy Networks (Organized by Nina Kolleck, David Tindall and Alexandra Goritz) Universitz Alliance for Sustainability Spring Campus (April 1-5, 2019) At: Freie Universität Berlin Section (Febeckstraße 23-25)

Universität Konstanz



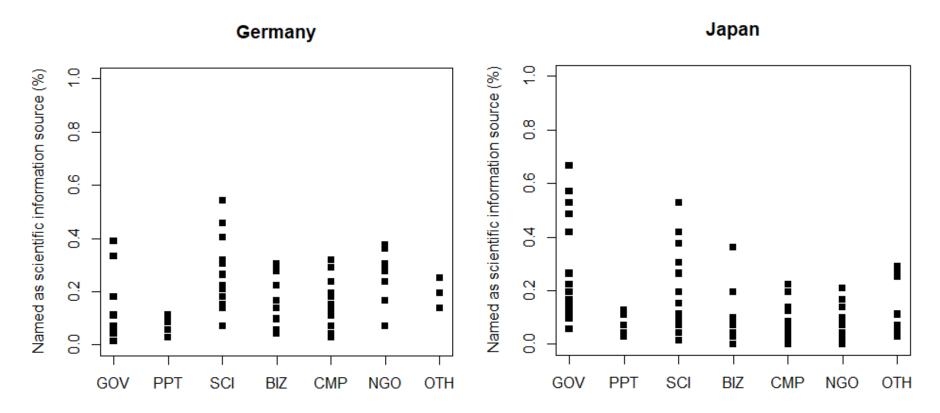
## Scientification of Policy Domains and Evolution of Organizational Beliefs: Climate Change Policy Networks in Germany and Japan

## Dr. Keiichi Satoh

University of Konstanz

### Dr. Nagel Melanie

University of Konstanz


Prof. Dr. Volker Schneider

University of Konstanz

## In Brief: Faith in climate change and organizational ecology

- Motivation
  - Relationship between organizational ecology and "scientification" of the policy domain
- RQ
  - How varying climate change policy networks and organizational ecologies in Germany and Japan produce different policy orientations in the both countries
- Data
  - Qualitative: historical development of the organizational field in
  - Quantitative: Survey to the organization in Japan (n=72) and Germany (n=51) between 2012 and 2013.
- Result
  - More "science user" type organization in Japan  $\rightarrow$  skeptical to climate change
- Implication
  - Wider range of "Scientification" of the organizational field in Germany
  - Importance to focus on belief formation, not taking beliefs as given

# "From where does your organization get climate change scientific information?"



- Variety of sectors as scientific information source
- Ministry as main source for climate change science in Japan; Scientific organizations as main source in Germany

## Framework: Organizational ecology and Faith in science

#### **General Notion**

Different degree of faith in science among countries and among policy issues
Question

How is scientific knowledge shared and how is trust in expertise constituted?

- <u>Attribute effect</u>: composition of the organizations
- <u>Network effect</u>: Exchange of the information

#### **Feature of our Framework**

- Policy network approach: network among the major policy actors
- Belief as the dependent variable: shaped by interests and ideas (not: Belief = interest)
- Coleman-Boudon-type multi-level explanatory model: Macro-micro interaction model



## **Historical Development of Organizational Ecologies**

#### Feature of the organizational ecology in Japan and Germany

- Japan:
  - Ministerial liaison research Institutes as main scientific knowledge producer
  - Scientific research and its debates are conditioned by this governmental sectionalism
- Germany
  - Institutionalized advisory bodies where various stakeholder gather
  - Evolutions of a wider range of independent research institutes (those by political parties, by NGOs and independent academic institutes)

#### **Historical background**

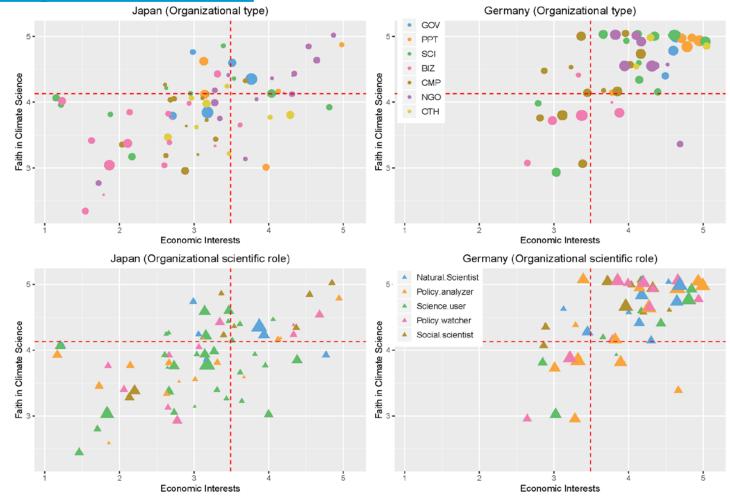
- Japan:
  - Strong autonomy of the Ministries for the policy-making
  - No legal provision for NGOs  $\rightarrow$  prevented NGOs to grow and other civil society actors
- Germany
  - Consensus democracy system
  - Early institutionalization of enthusiastic climate policy

## **Quantitative policy network research: Data and Method**

#### Data

- Comparing climate change policy network project (COMPON Project)
- Survey to major organizations in climate change policy-making during 2012 and 2013
  - Japan (n=72, response rate = 57.6%)
  - Germany (n = 51, response rate = 72.9%)

#### Method


- Step 1: Making a *role* typology of organization in terms of scientific engagement (cluster analysis)
- Step 2: Comparing faith score (belief in climate science: composite variable)
- Step 3: Investigate how organizational population determine the organizational faith (multi-level regression with autocorrelation effects)
- Step 4: Influence structure among organizational *role (QAP-regression)*

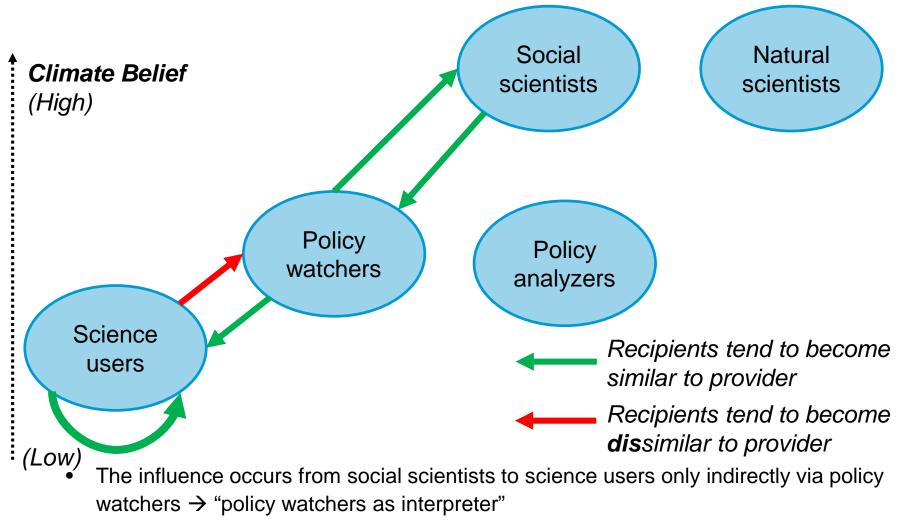
## Step 1: Different composition of the role in Germany and Japan

|                        | Natural       | social           | Policy        | policy         | science          | total     |  |
|------------------------|---------------|------------------|---------------|----------------|------------------|-----------|--|
| (%)                    | scientist     | scientist        | analyzer      | watcher        | user             |           |  |
| Germany                | 19.6          | 17.6             | 25.5          | 21.6           | 15.7 ***         | 100.0     |  |
| Japan                  | 9.7           | 11.1             | 19.4          | 13.9           | 45.8 ***         | 100.0     |  |
| Note: X <sup>2</sup> = | 12.702 (df=4, | p < .05). Signif | itance in ead | ch cell was te | sted by residual | analysis. |  |

- Organizational typology based on ((A) organizational domain: natural scientific research, social scientific research; (B) Availability of staff for each research)
- Five type of actors:
  - Natural scientists: mainly engage in natural scientific research
  - Social scientists: mainly engage in social scientific research
  - **Policy analyzer**: collecting policy data and monitor the climate policy
  - **Policy watcher**: monito the climate policy
  - Science user: don't engage in scientific activities by themselves
- Half of the organizations are classified as "science user" in Japan
- Mainly brought by the fact that not so many actors other than governmental organizations engage in scientific activities

## Step 2: Organizational faith




- Significantly higher score "faith in climate science" in Germany
- "Faith in climate science" strongly correlates with "the faith in economic profitability throurgh climate policy" → <u>one dimension: climate belief score</u>

|              |          |                             | DV=Climate belief score |           |          |          |             |       |  |
|--------------|----------|-----------------------------|-------------------------|-----------|----------|----------|-------------|-------|--|
|              |          |                             | post.mean               | est.Error | I-95% CI | U-95% Cl | Eff. Sample | R-hat |  |
|              |          | Intercept                   | 0.75                    | 1.54      | -2.87    | 3.87     | 969         | 1.0   |  |
| evel1 Catego | Category | Government                  | ref.                    |           |          |          |             |       |  |
|              |          | Political Party             | 0.37                    | 0.34      | -0.28    | 1.04     | 1409        | 1.0   |  |
| Role         |          | Science                     | -0.45                   | 0.30      | -1.03    | 0.13     | 1232        | 1.0   |  |
|              |          | <b>Business Association</b> | -0.95                   | 0.31      | -1.55    | -0.35    | 1224        | 1.0   |  |
|              |          | Business Companies          | -0.67                   | 0.29      | -1.23    | -0.09    | 1225        | 1.0   |  |
|              |          | NGO                         | -0.04                   | 0.30      | -0.64    | 0.58     | 1163        | 1.0   |  |
|              |          | Others                      | -0.22                   | 0.33      | -0.86    | 0.45     | 1217        | 1.0   |  |
|              | Role     | Natural scientists          | ref.                    |           |          |          |             |       |  |
|              |          | policy analyzer             | -0.42                   | 0.24      | -0.90    | 0.05     | 1363        | 1.0   |  |
|              |          | Science user                | -0.54                   | 0.24      | -0.98    | -0.06    | 1020        | 1.0   |  |
|              |          | Policy watcher              | -0.37                   | 0.26      | -0.90    | 0.15     | 127         | 1.0   |  |
|              |          | Social scientist            | -0.12                   | 0.25      | -0.60    | 0.36     | 1522        | 1.0   |  |
|              |          | Social influence            |                         |           |          |          |             |       |  |
|              |          | (policy advice)             | 0.4                     | 0.13      | 0.15     | 0.66     | 2993        | 1.0   |  |
| level2       |          | country intercept           | 2.24                    | 2.09      | 0.26     | 7.77     | 772         | 1.0   |  |
|              |          | n                           | 123                     |           |          |          |             |       |  |
|              |          | country                     | 2                       |           |          |          |             |       |  |

## Step 3: Multi-level analysis on climate belief score

- Business associations and companies tend to have lower climate belief
- "Scientific user" type organizations tend to have lower climate belief
- $\rightarrow$  Organizational capacity and awareness with respect to global warming matter
  - $\rightarrow$  Not only interests, but also ideas matters for the belief formation

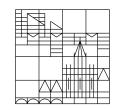
## Step 4: Influence structure among the different roles: QAP regression



• Science users influence within them

 $\rightarrow$  the science users' opinion tend to become separated from those of the other type of organizations

## **Conclusion**


- German societal structure contributed to the "scientification" of wider range of civil society organizations. These "scientificated" organizations expressed strong belief in climate science and economic profitability through climate policy.
- Different societal structures in policy domains generate different organizational ecologies. These different organizational landscapes in turn lead to the different orientation in the public policy

## Thank you!





## Universität Konstanz





## **Contact: Keiichi Satoh**

keiichi.satoh@uni-konstanz.de

This work was supported by the American National Science Foundation via University of Minnesota (BCS 0827006) and Japan Society for the Promotion of Science (22243036; 15H03406; 11J07459; 15J03089; 18H00919).