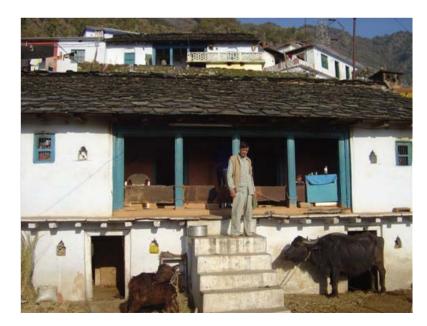


Leibniz Centre for Agricultural Landscape Research

Confronting the climate change challenge: Discussing the role of rural India under cumulative emission budget approach

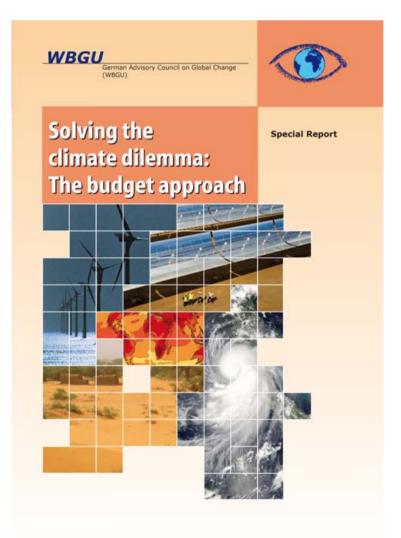
Harald Kaechele, T.S. Amjath-Babu, Kathrin Specht, Sunil Nautiyal, K.V. Raju

FU-Berlin - India Science Day – 11. June 2012



Our Indo-German **Research-Team** is dealing with sustainable development of rural areas in India.

Why is Germany funding research in rural India?



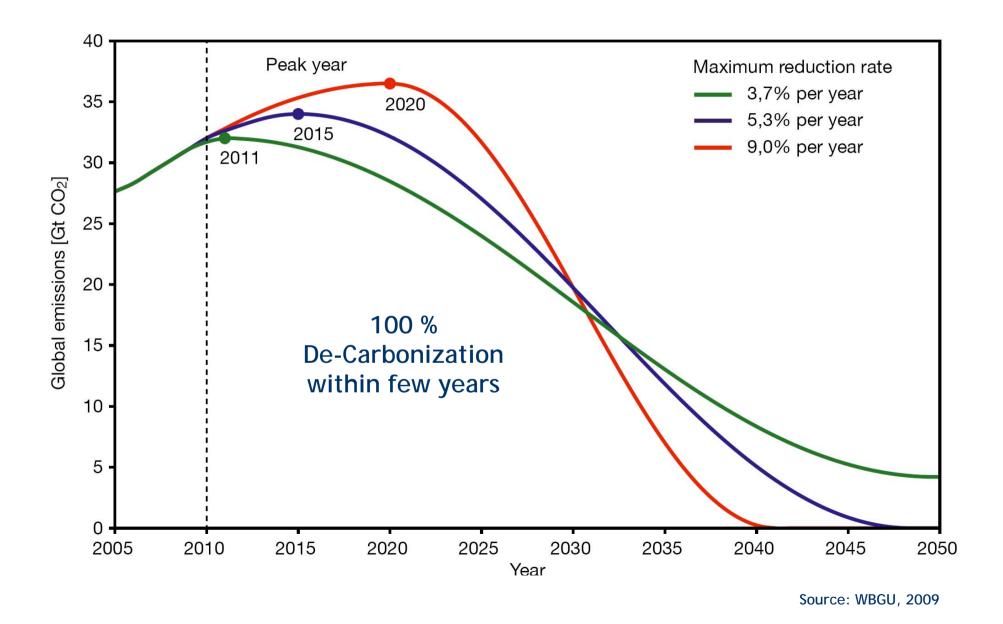
Charity? or Selfishness?

The vital linkage between rural India and industrialized Germany is exemplified by the fight against climate change.

Core Issues of Budget Approach

Leibniz Centre for Agricultural Landscape Research

G 20 and Copenhagen Accord agreed to 2°C guard rail.

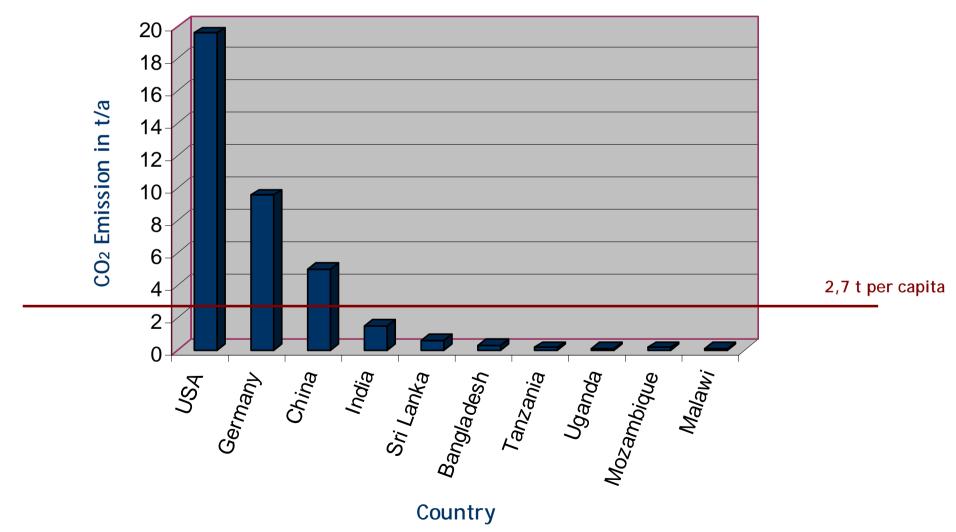


To meet this aim with a probability of 67 %, max. 750 Gt CO_2 may be released into earth atmosphere until 2050 (WBGU)

Examples of global emission pathways for the period 2010-2050 with global CO2 emissions capped at 750 Gt

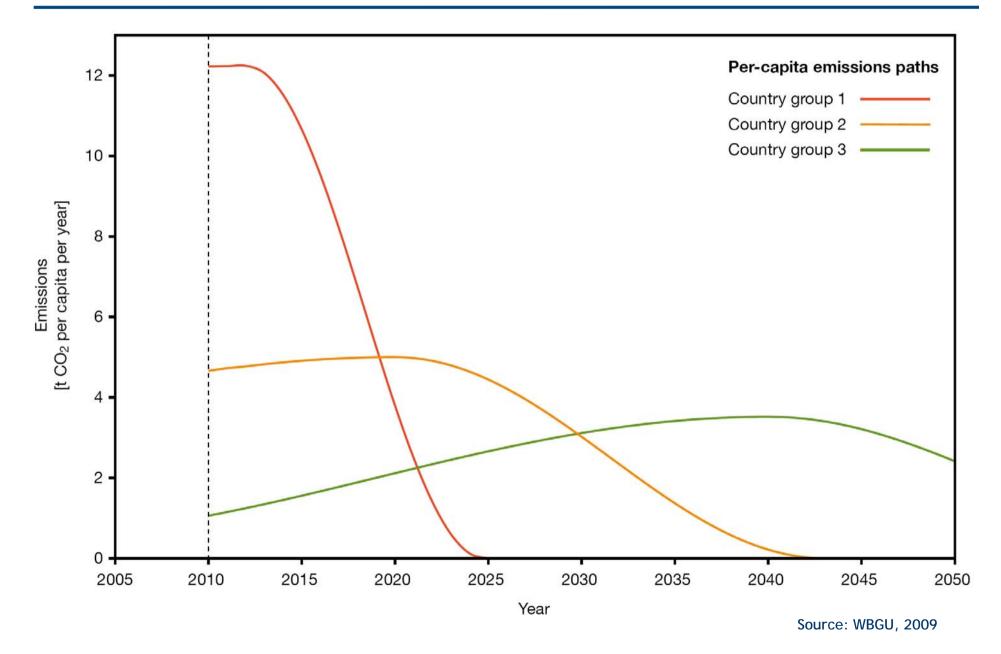
Leibniz Centre for Agricultural Landscape Research

Leibniz Centre for Agricultural Landscape Research


Along with the vision of *climate justice* formulated by Indian Prime Minister Manmohan Singh and German Chancellor Angela Merkel, Global CO₂ budget should be distributed equally among the *world population* (*per capita basis*)

According to WBGU, average yearly emission allowance amounts to *2.7 t CO₂* per capita (for world population 2010)

Per capita CO₂ Emmissions in 2007

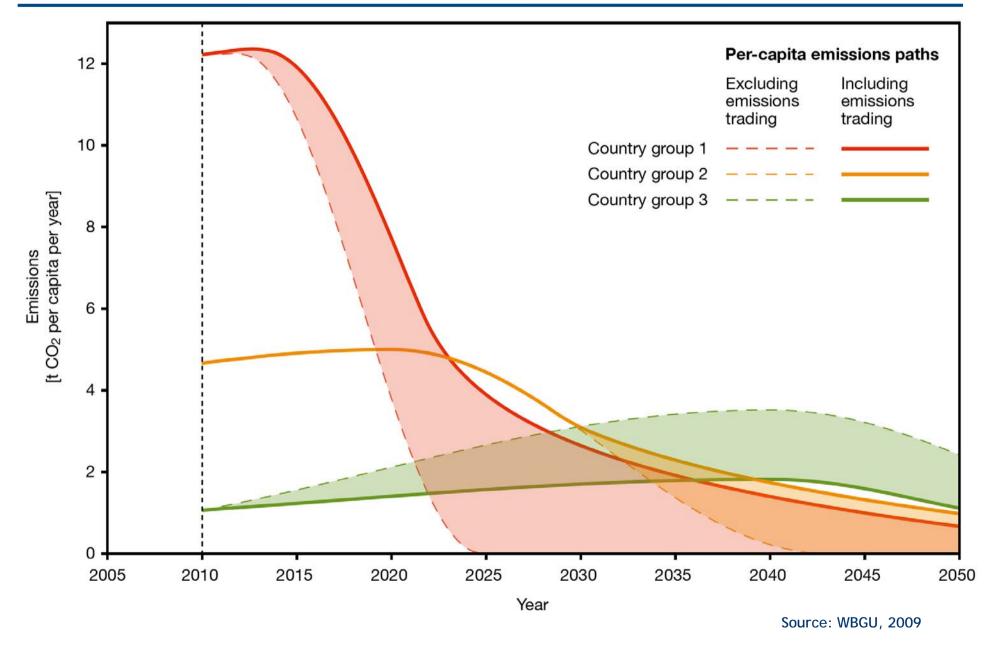


WBGU identifies 3 groups of countries that can follow different pathways to decarbonisation

group 1 > 5,4 t group 2 2.7 to 5.4 t group 3 < 2.7 t CO_2 per capita per year CO_2 per capita per year CO_2 per capita per year

Examples of per-capita emissions paths of CO₂ for three groups of countries according to the WBGU budget approach

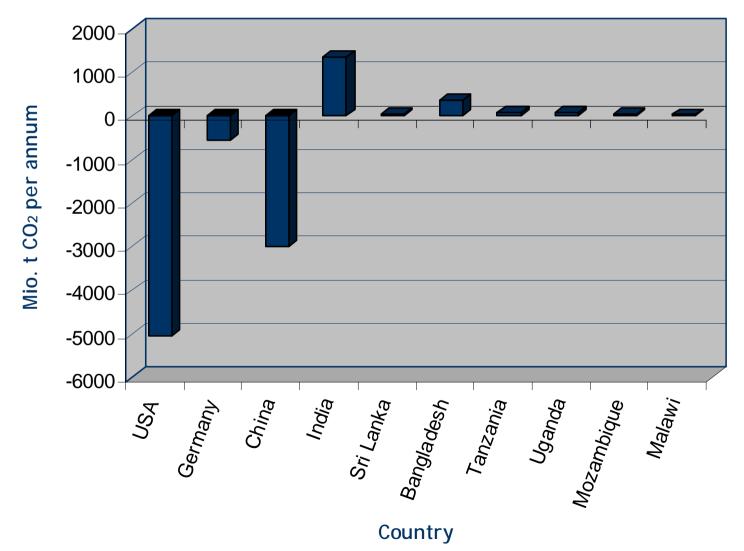
Group 1: even if countries undertake exceptional efforts to de-carbonize their economy, for a limited time there is a need for extra CO₂ permits from other countries


Group 2 might meet CO₂ guard rail without extra permits

Group 3 might provide permits for group 1 countries (sell permissions via International Climate Bank)

Examples of per-capita emissions paths of CO2 from fossil sources for three groups of countries according to the WBGU budget

approach, which could emerge through emissions trading



India, due to its big population, is the only country within 3rd group that might be able to provide substantial amount of CO₂ permits

Demand/Supply of CO₂ Budgets per annum in Mio t in 2007

Discussing the role of rural India under cumulative emission budget approach

I) Tradable carbon surplus stems from the poor

Population, expenditure class and CO ₂ emissions in India 2003-2004.							
Expenditure class (2003-04)	Population (millions)		CO ₂ emissions (t/capita/year)				
	rural	urban	rural	urban			
EC1 very poor	77.2	30.0	0.150	0.272			
EC2 (poor below poverty line)	154.4	60.0	0.215	0.432			
EC3 average	308.7	120.1	0.336	0.802			
EC4 above average	154.4	60.0	0.677	1.567			
EC5 relatively well off	77.2	30.0	1.365	4.099			

Source: Saluja and Yadav, 2006; Parikh et al., 2009.

II) CO₂ surplus budget might provide funding

for low carbon

development in

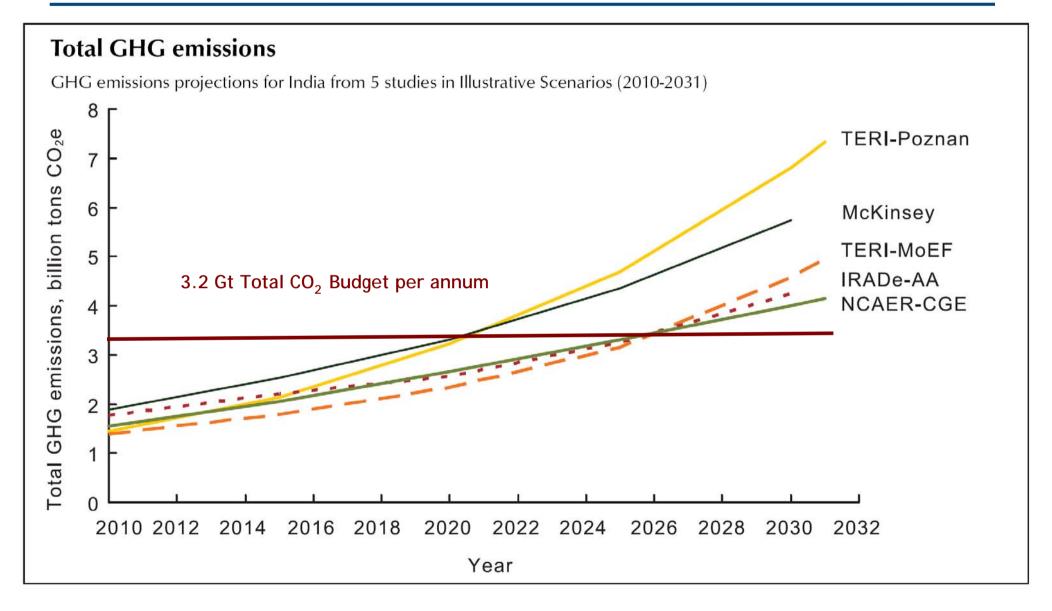
rural India

Auctioning of Emission Allowances in Germany: Periodical Report July 2011

Month	Contract	Dates	Bid Volume	Auction Volume	Cover Ratio	Clearing Price	Revenue
January	Spot	4	5,931,000	1,200,000	*4.94	*14.14 €	16,965,000 €
	Futures	4	11,877,000	2,280,000	*5.21	*14.51 €	33,071,400 €
February	Spot	3	8,657,000	1,200,000	*7.21	*14.66 €	17,595,000 €
	Futures	4	14,081,000	2,280,000	*6.18	*14.87 €	33,892,200 €
March	Spot	5	11,693,000	1,500,000	*7.80	*15.92 €	23,886,000 €
March Fi	Futures	5	25,105,000	2,850,000	*8.81	*16.54 €	47,139,000 €
April	Spot	4	9,529,000	1,200,000	*7.94	*16.45 €	19,737,000 €
April	Futures	4	18,997,000	2,280,000	*8.33	*16.92 €	38,577,600 €
Mon	Spot	5	19,924,000	1,500,000	*13.28	*16.62 €	24,930,000 €
May	Futures	4	24,197,000	2,280,000	*10.61	*16.69 €	38,047,500 €
June	Spot	4	15,479,000	1,200,000	*12.90	*15.12 €	18,147,000 €
	Futures	5	20,503,000	2,850,000	*7.19	*15.55 €	44,328,900 €
July	Spot	4	15,477,000	1,200,000	*12.90	*12.49 €	14,988,000 €
	Futures	4	21,270,000	2,280,000	*9.33	*12.63 €	28,790,700 €
SI	oot	29	86,690,000	9,000,000	*9.63	*15.14 €	136,248,000 €
Fut	ures	30	136,030,000	17,100,000	*7.95	*15.43 €	263,847,300 €
То	otal	59	222,720,000	26,100,000	**8.53	**15.33 €	400,095,300 €

Source: DEHSt 2011

Per capita value of annual CO ₂ trading budget in India 2003-2004 (20,25 US \$ /t CO ₂)								
Expenditure class (2003-04)	Population (millions)		CO ₂ trading budget (US \$/capita/year)					
	rural	urban	rural	urban				
EC1 very poor	77.2	30.0	51.64	49.17				
EC2 (poor below poverty line)	154.4	60.0	50.32	45.93				
EC3 average	308.7	120.1	47.87	38.43				
EC4 above average	154.4	60.0	40.97	22.94				
EC5 relatively well off	77.2	30.0	27.03	-21.65				



III) Current tradable carbon budget surplus is

- 1.7Gt (35 billion US \$) but in the case of
- business as usual development,
- this window of
- opportunity
- closes soon

Source: Climate Modelling Forum, 2009

Conclusions

- Industrialised world is depending on India's poorest to provide surplus budget to buffer their carbon budget deficit
- Western Countries need buffer budget for long time
- Western Countries should have a vital interest to support India's poorest to develop without additional CO₂ requirement

- Even though Indian rural societies have a right to increase CO₂ emission tremendously, Indian rural societies may abstain from following a fossil strategy
- Rural development in India might better follow an innovative low carbon path instead of a carbon intensive pathway
- Generating tradable CO₂ permissions might become a powerful instrument for generating money for low carbon development in rural societies

Thank You